
www.manaraa.com

Y.-S. Ma Editor

Semantic Modeling
and Interoperability
in Product and
Process Engineering

Springer Series in Advanced Manufacturing

A Technology for Engineering Informatics

www.manaraa.com

Springer Series in Advanced Manufacturing

Series Editor

Duc Truong Pham

For further volumes:
http://www.springer.com/series/7113

http://www.springer.com/series/7113

www.manaraa.com

Y.-S. Ma
Editor

Semantic Modeling and
Interoperability in Product
and Process Engineering

A Technology for Engineering Informatics

123

www.manaraa.com

Editor
Y.-S. Ma
Department of Mechanical Engineering
University of Alberta
Edmonton, AB
Canada

ISSN 1860-5168 ISSN 2196-1735 (electronic)
ISBN 978-1-4471-5072-5 ISBN 978-1-4471-5073-2 (eBook)
DOI 10.1007/978-1-4471-5073-2
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013940088

� Springer-Verlag London 2013
LEED� is a registered trade mark of U.S. Green Building Council Copyright � 2011 U.S. Green
Building Council. All Rights Reserved.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.manaraa.com

Preface

The study of Semantic Modeling and Interoperability in Product and Process
Engineering deals with an advanced engineering informatics technology in sup-
porting product and process modeling, development, implementation, and
management.

This book is a condensed technology handbook for advanced modeling and
application of engineering knowledge in product development and process man-
agement in industry. Computer-aided tools have been widely used in design and
manufacturing activities. However, it is clear that most of these tools are not
capable of incorporating engineering semantics into their solutions. Consequently,
it is a challenge for the industry to model and apply comprehensive engineering
knowledge, constraints, procedures, and concurrent aspects of design and manu-
facturing in a systematic and sustainable manner. In the past decade, feature-based
design and manufacturing applications have gained momentum in the Computer-
Aided Design and Manufacturing (CAD/CAM) domains to represent and reuse
some design and manufacturing patterns with effective applicability. However, the
actual scope of feature application is still very limited.

The editing author of this book intends to expand the scope of feature tech-
nology to the more open approach of engineering semantic modeling, and to
provide a framework of technological solutions for system integration and
information-sharing. This book presents a set of researched methods that can
consistently represent and uniformly manage engineering semantics in the
ever-dynamic evolvement of modern enterprise. With a proposed common infra-
structure of product and process modeling, the interoperability among different
computer systems is addressed based on a fine-grain feature-based informatics
approach. This book also features some insightful case studies that show promising
application prospects at different product stages and in different areas of design
and manufacturing. Academics, advanced engineering students, and practicing
engineers will benefit from the methodology and techniques proposed in the book,
which will serve as useful references, guidelines, and helpful tips for their
teaching, research, and development, as well as provide real engineering inno-
vation projects which will increase industrial competency in the field of
engineering informatics.

v

www.manaraa.com

The proposed unified feature scheme, based on the associative feature concept
and an important expansion of the well-known feature-based design and manu-
facturing approach, offers a systematic framework of fine-grain semantic modeling
methods for representation and application of engineering knowledge, constraints,
and associated engineering procedures. This semantic modeling technology sup-
ports uniform, multi-faceted, and multi-level collaborative system engineering
with heterogeneous computer-aided tools, such as CAD/CAM, Computer-Aided
Engineering (CAE), and Enterprise Resource Planning (ERP) applications. The
enabling mechanism, which is essential to enable the proposed technology of
implementing associative features, is introduced in detail from concept to imple-
mentation, then expanded to real-world applications. Practical case studies are
provided to readers with insightful application references that enable readers to use
the proposed method with some tested templates.

Semantic Modeling and Interoperability in Product and Process Engineering
provides a reference solution for the challenging engineering informatics field,
aiming at the enhancement of sustainable knowledge representation, implemen-
tation, and reuse in an open and yet practically manageable way. It is the authors’
goal that this book becomes a valuable reference for scholars, practitioners, and
learners from both academia and the engineering field.

There are 11 chapters in this book. They are organized as follows.
‘‘Introduction to Engineering Informatics’’ gives a general definition of engi-

neering informatics and reviews the current applications of modern engineering
informatics in product development, concurrent and collaborative engineering, and
chemical process engineering. A few fundamental technologies for developing
engineering informatics solutions are briefly reviewed, including object-oriented
software engineering, Unified Modeling Language (UML), multi-faceted data
repositories, data mining, and semantic modeling. This chapter describes the
context of engineering informatics which is the core theme of this book.

‘‘A Review of Data Representation of Product and Process Models’’ reviews the
state of the art in product and process informatics modeling and implementation.
Through a systematic review, it concludes that interoperability among computer
systems is a major hurdle. Feature technology is particularly reviewed for its
strong versatility in engineering informatics. In this chapter, a special section is
devoted to reviewing chemical process engineering informatics modeling systems
and processes because this application domain has a unique nature which is dif-
ferent from other typical consumer product engineering practices, and has special
local industrial relevance to the authors.

‘‘An Example of Feature Modeling Application: Smart Design for Well-
Drilling Systems’’ provides a typical feature modeling and implementation
example, i.e., the development of an oil well drilling design calculation and CAD
model generation software tool. Detailed system design modules, such as drilling
well casing design, drilling string design, and operation parameter optimization,
are described, and case demonstrations for these modules are presented.

‘‘Fundamental Concepts of Generic Features’’ introduces the concept of generic
feature, which is a fundamental concept of a common feature class definition that

vi Preface

http://dx.doi.org/10.1007/978-1-4471-5073-2_1
http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_3
http://dx.doi.org/10.1007/978-1-4471-5073-2_3
http://dx.doi.org/10.1007/978-1-4471-5073-2_4

www.manaraa.com

enables representations of different domain features on top of the generic feature
with built-in methods to define the most common properties, such as geometric
references, attributes, and the related constraints. The geometric and non-
geometric consistency-checking methods are also discussed with a multi-view
definition approach. Further, a preliminary entire product model with an open
framework to accommodate multiple engineering applications is presented; this is
the unified feature modeling framework.

‘‘Unified Feature Paradigm’’ is related to ‘‘Fundamental Concepts of
Generic Features’’ in that it offers more details about the unified feature model-
ing framework. In this chapter, the modeling scheme, cellular model representa-
tion, knowledge-based reasoning, and association and change propagation are
presented. Constraint modeling, defined in a broader sense than just geometric
constraints, is also illustrated with the help of graph theory. The key mechanism
for maintaining feature consistency, i.e., the multiple-view association method in
the unified feature system, which enables engineers to access data pertaining to
specific engineering domains from the generic feature, is described. A new feature
paradigm to support engineering interoperability has been established by
‘‘Fundamental Concepts of Generic Features’’ and ‘‘Unified Feature Paradigm’’.

‘‘Features and Interoperability of Computer Aided Engineering Systems’’
explores advanced feature-related technologies from the angle of application. It
begins with the development of CAx systems and their customization, then
reviews the inherent problem of interoperability. After discussing the pros and
cons of the most common approach, i.e., STEP-based data exchange and system
integration, this chapter explores feature-based solutions with a thorough review of
the research field. It provides a well-organized and carefully categorized reference
for readers. One section is dedicated to chemical process engineering as well,
which can be appreciated for the identification of interoperability gaps. An inte-
grated system architecture is proposed.

‘‘Data Representation and Modeling for Process Planning’’ presents an
insightful research effort in data structure modeling in the domain of computer-
aided process planning, which covers manufacturing procedure design with tool
and machine alternatives based on a dynamic manufacturing environment. Data
search algorithms are suggested with the support of various engineering databases.
The system described can generate feasible manufacturing process solutions and
estimate cost and time efficiently. With rich data and cases from the real world,
this chapter will be a valuable reference for developers and researchers in the field.

‘‘Computation of Offset Curves Using a Distance Function: Addressing a
Key Challenge in Cutting Tool Path Generation’’ illustrates an important aspect of
engineering informatics, i.e., the algorithms needed to deal with complex path
problems. One of the most commonly used algorithms is curve offsetting; this
chapter reports on a recent development of a curve offsetting model with a distance
function. The method is different from the traditional approximating methods
based on interpolation in that it approximates the progenitor curve with bi-arcs and
generates the exact offset curve with direct error control.

Preface vii

http://dx.doi.org/10.1007/978-1-4471-5073-2_5
http://dx.doi.org/10.1007/978-1-4471-5073-2_4
http://dx.doi.org/10.1007/978-1-4471-5073-2_4
http://dx.doi.org/10.1007/978-1-4471-5073-2_4
http://dx.doi.org/10.1007/978-1-4471-5073-2_5
http://dx.doi.org/10.1007/978-1-4471-5073-2_6
http://dx.doi.org/10.1007/978-1-4471-5073-2_7
http://dx.doi.org/10.1007/978-1-4471-5073-2_8
http://dx.doi.org/10.1007/978-1-4471-5073-2_8

www.manaraa.com

‘‘Feature Transformation from Configuration of Open-Loop Mechanisms
into Linkages with a Case Study’’ proposes a feature synthesis method for
design manipulators based on a hybrid method of Artificial Neural Network
(ANN) and optimization techniques. This approach is useful for solving reverse
linkage dimension design problems, such as an excavator design for a predefined
reaching envelope profile curve. In fact, the proposed solution to this problem
presents a typical example of mapping from the product specification feature to the
product configuration feature.

‘‘Feature-Based Mechanism Design’’ is a continuation of typical mechanism
design as shown in ‘‘Feature-Based Mechanism Design’’, but focuses on dimensional
synthesis, embodiment, and CAD model generation with minimum designer inter-
vention. Parametric feature-based modeling is successfully applied in mechanism
embodiment design. In both ‘‘Feature Transformation from Configuration of
Open-Loop Mechanisms into Linkages with a Case Study’’ and ‘‘Feature-Based
Mechanism Design’’, features are effectively used for semantic knowledge repre-
sentation, product modeling, design process interactions, and design intent evalua-
tion. These two chapters demonstrate an advanced feature modeling and engineering
approach to embed and evaluate design intent.

‘‘A Smart Knowledge Capturing Method in Enhanced Generative Design
Cycles’’ proposes a new method to capture and reuse engineering knowledge
through CAD and CAE interactions by recording journal files and creating reus-
able source codes for generative CAD and CAE integration. The CAD/CAE
feature information and data associations are modeled and implemented in a
common data model, which makes data sharing easily attainable. It offers a design
automation solution for those products with relatively predictable configurations
and constraints.

This book provides a systematic engineering informatics modeling and appli-
cation methodology that is based on original research carried out over the past two
decades. The in-depth descriptions of the new feature paradigm as well as in-depth
process planning and product assembly data modeling are the book’s primary
achievement. Readers will benefit from the systematic theory and the numerous
application cases, and are given exposure to the effectiveness and usefulness of the
proposed engineering informatics methodology.

The editing author would like to take this opportunity to express his appreci-
ation to all the co-authors of the 11 chapters for their significant contributions to
this book. Their excellent research efforts, insightful observations, and valuable
commitment have made this book much more solid in theory and rich in case
studies. Among them, the editing author would specially thank Professor Qingjin
Peng, from University of Manitoba, who contributed ‘‘Data Representation and
Modeling for Process Planning’’; and Dr. C. K. Au, from University of Waikato,
who contributed ‘‘Computation of Offset Curves Using a Distance Function:
Addressing a Key Challenge in Cutting Tool Path Generation’’. These chapters are
substantial contributions complementary to other chapters, and make this book
more complete in coverage. The author would also like to extend his sincere
thanks to Dr. Rachel Hertz Cobb for her professional editing and patient correction

viii Preface

http://dx.doi.org/10.1007/978-1-4471-5073-2_9
http://dx.doi.org/10.1007/978-1-4471-5073-2_9
http://dx.doi.org/10.1007/978-1-4471-5073-2_10
http://dx.doi.org/10.1007/978-1-4471-5073-2_10
http://dx.doi.org/10.1007/978-1-4471-5073-2_9
http://dx.doi.org/10.1007/978-1-4471-5073-2_9
http://dx.doi.org/10.1007/978-1-4471-5073-2_10
http://dx.doi.org/10.1007/978-1-4471-5073-2_10
http://dx.doi.org/10.1007/978-1-4471-5073-2_11
http://dx.doi.org/10.1007/978-1-4471-5073-2_11
http://dx.doi.org/10.1007/978-1-4471-5073-2_7
http://dx.doi.org/10.1007/978-1-4471-5073-2_7
http://dx.doi.org/10.1007/978-1-4471-5073-2_8
http://dx.doi.org/10.1007/978-1-4471-5073-2_8

www.manaraa.com

of those numerous typo and grammatical errors; and Miss Katy Moore who dili-
gently formatted the book as per the publisher’s requirement in a very short period
of time. Their great effort has been instrumental to the timely delivery of this book
as planned, and the consistent quality as expected.

Edmonton, AB, Canada, 2012 Y.-S. Ma

Preface ix

www.manaraa.com

Contents

Introduction to Engineering Informatics . 1
Narges Sajadfar, Yanan Xie, Hongyi Liu and Y.-S. Ma

A Review of Data Representation of Product and Process Models 31
Narges Sajadfar, Yanan Xie, Hongyi Liu and Y.-S. Ma

An Example of Feature Modeling Application: Smart Design
for Well-Drilling Systems . 53
Rajiur S. M. Rahman and Y.-S. Ma

Fundamental Concepts of Generic Features . 89
S.-H. Tang, Gang Chen and Y.-S. Ma

Unified Feature Paradigm . 117
Zhengrong Cheng, S.-H. Tang, Gang Chen and Y.-S. Ma

Features and Interoperability of Computer Aided
Engineering Systems . 143
Yanan Xie, Jikai Liu, Hongyi Liu and Y.-S. Ma

Data Representation and Modeling for Process Planning 193
Chulho Chung and Qingjin Peng

Computation of Offset Curves Using a Distance Function:
Addressing a Key Challenge in Cutting Tool Path Generation 259
C. K. Au and Y.-S. Ma

Feature Transformation from Configuration of Open-Loop
Mechanisms into Linkages with a Case Study. 275
Abiy Wubneh, C. K. Au and Y.-S. Ma

xi

http://dx.doi.org/10.1007/978-1-4471-5073-2_1
http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_3
http://dx.doi.org/10.1007/978-1-4471-5073-2_3
http://dx.doi.org/10.1007/978-1-4471-5073-2_4
http://dx.doi.org/10.1007/978-1-4471-5073-2_5
http://dx.doi.org/10.1007/978-1-4471-5073-2_6
http://dx.doi.org/10.1007/978-1-4471-5073-2_6
http://dx.doi.org/10.1007/978-1-4471-5073-2_7
http://dx.doi.org/10.1007/978-1-4471-5073-2_8
http://dx.doi.org/10.1007/978-1-4471-5073-2_8
http://dx.doi.org/10.1007/978-1-4471-5073-2_9
http://dx.doi.org/10.1007/978-1-4471-5073-2_9

www.manaraa.com

Feature-Based Mechanism Design . 303
Abiy Wubneh and Y.-S. Ma

A Smart Knowledge Capturing Method in Enhanced
Generative Design Cycles . 353
G. P. Gujarathi and Y.-S. Ma

Index . 381

xii Contents

http://dx.doi.org/10.1007/978-1-4471-5073-2_10
http://dx.doi.org/10.1007/978-1-4471-5073-2_11
http://dx.doi.org/10.1007/978-1-4471-5073-2_11

www.manaraa.com

Abbreviations

5 S’s Japanese words: seiri, seiton, seiso, seiketsu, and shitsuke. English
words: sorting, straightening, shining, standardizing, sustaining

AADE Autonomous agent development environment
ACM Application cellular model
AF Application feature
AFM Application feature model
AFR Automatic feature recognition
AL Application layer
ANN Artificial neural network
ANSI American national standards institute
AOR Annual operational requirement
AP Application protocol
APFM Assembly planning feature model
API Application programming interface
ASFM Analysis feature model
B2B Business-to-business
BHA Bottom hole assembly
BIT Built-in test
BOM Bill of materials
BS Bounding sphere
BST A file extension with an integrated engineering data format
CAA Component application architecture
CAAD Computer-aided aesthetic design
CAC Corrosion allowance constraint
CACD Computer-aided conceptual design
CAD Computer-aided design
CAE Computer-aided engineering
CAI Computer-aided inspection
CAM Computer-aided manufacturing
CAPP Computer-aided process planning
CAS Computer-aided styling
CATS Computer-aided tool selection
CSYS Coordinate system

xiii

www.manaraa.com

CDFM Concept feature model
CDM Common data model
CE Concurrent engineering
CEC Capacity-of-equipment constraint
CEE Collaborative engineering environment
CIM Computer-integrated manufacturing
CNC Computer numerical control
CORBA Common object request broker architecture
CPCDF Chemical process conceptual design feature
CPDM Collaborative product data model
CPE Chemical process engineering
CRM Customer relationship management
CSG Constructive solid geometry
CSM Component supplier management
DB Database
DBF Design by feature
DBMS Database management system
DC Design change
DDFM Detail feature model
DDL Data definition language
DFA Design for assembly
DFM Design for manufacturing
DHT Design history management tool
DIDE Distributed intelligent design environment
DL Data layer
DML Data manipulation language
DNC Diameter of nozzle constraint
DOF Degree of freedom
DP Diameter of piping
DSS Decision-support system
DXF Data exchange file
EAI External authoring interface
EC Engineering change
ECM Engineering change management
ECP Engineering change propagation
EIDL End item design life
EPC Engineering, procurement, and construction
EPM Entire product model
ERP Enterprise resource planning
ESA Engineering server agent
ESDS Expert slurry-design system
FAT Fastener-axis action tool
FBD Free body diagram
FE Finite element
FEA Finite element analysis

xiv Abbreviations

www.manaraa.com

FEM Finite element method
FR Feature recognition
Fr Flow rate
GA Genetic algorithm
GT Group technology
GUI Graphical user interface
HVAC Heating, ventilation, and air conditioning
IBIS Issue-based information system
IA Interface agent
ICT Information and computer technology
IEC International Electrotechnical Commission
IGES Initial graphics exchange specification
IPDE Integrated product data-sharing environment
ISO International Organization for Standardization
IT Information Technology
JA Job agent
JSDT Java shared data toolkit
JTMS Justification-based truth maintenance system
KA Kinematic analysis
Kanban A Japanese term, i.e., ‘‘Signboard’’—it means a customer

requirement driven scheduling system for lean
and just-in-time production

KBE Knowledge-based engineering
KBS Knowledge-based system
MAD Mass acceleration diagrams
MDA Minimum deviation area
MDDF Mechanical detail design feature
MDO Multidisciplinary design optimization
ME&D Mechanical engineering and design
MFC Microsoft foundation class
MMS Multi-model structure
MMT Multi-model technology
MOKA Methodology for knowledge based engineering applications
MOO Multiple-objective optimization
MPFM Machining planning feature model
MSE Mechanical specific energy
MTBF Mean time between failures
MTTR Mean time to repair
MV Machining volume
NC Numerical control
NDF Neutral data format
NMT Non-manifold topological
NPD New product development
NURBS Non-uniform rational B-spline
OBB Oriented bounding box

Abbreviations xv

www.manaraa.com

OD Outer diameter
OLAP Online analytical processing
OO Object-oriented
OODB Object-oriented database
OOMF Object-oriented manufacturing feature
OOP Object-oriented programming
P&ID Process and instrumentation diagram
PCM Product configuration management
PDM Product data management
PDMS Product data management system
PFD Process flow diagram
PLM Product lifecycle management
PMEX Performance measurement evaluation matrix
PMPD Performance measurement for product development
poke yoke A Japanese term-error proofing
PRP Product realization process
PVD Physical vapor deposition
QFD Quality function deployment
R&D Research and development
RDB Relational database
RE Reverse engineering
ROP Rate of penetration
RPM Revolution per minute
RT Residence time
SMED ‘‘Single minute exchange of dies’’
SOO Single objective optimization
SPM Supply and planning management
SSL Semantic schema layer
SQL Structured query language
STC Shell thickness constraint
STEP Standard for the exchange of product data model
TAT Tool-axis action tool
TPS Toyota production system
TVD True vertical depth
UC Unified cells
UCM Unified cellular model
UI User interface
UML Unified modeling language
VE Virtual environment
VRML Virtual reality modeling language
WOB Weight of bit
X3D Extensible 3D
XML Extensible markup language

xvi Abbreviations

www.manaraa.com

Symbols

b0 Angular measurement parameter
A Area
Adx Area direct stress
Ator Area torsional
x Axis x
y Axis y
rZX Bending stress
b Boom deflection angle
a2 Boom lower angular displacement limit
RB1 Boom rotation matrix #1
RB2 Boom rotation matrix #2
b Boom side length
a1 Boom upper angular displacement limit
abu Bucket angle
h Cross-sectional height
b Cross-sectional base dimension
t Cross-sectional plate thickness
dA Differential area
dig1 Digging configuration angle #1
dig2 Digging configuration angle #2
rdx Direct stress
Q First moment of area about neutral axis
Fx Force along x-axis
Fy Force along y-axis
Fz Force along z-axis
l1 Hinge to hinge boom length
l3 Hinge to tip bucket length
A Homogeneous transformation matrix
H Horizontal excavator arm lengths
J1–J11 Joint 1, … 11
h_J10 Joint J10 extension distance
h_J11 Joint J100 extension distance

xvii

www.manaraa.com

h_J2 Joint J2 extension distance
h_J8 Joint J8 extension distance
c Linear measurement parameter
S3 Maximum cutting height
S7 Maximum depth cut at level bottom
S2 Maximum digging depth
S1 Maximum reach at ground level
S4 Maximum loading height
S6 Maximum vertical wall digging depth
S5 Minimum loading height
Mx Moment about x-axis
My Moment about y-axis
MZ Moment about z-axis
dp Pin diameter
lp Pin length
R Rotation transformation matrix
SD Scope display output
I Second moment of area
V Shear force
l2 Stick length
RS Stick rotation matrix
\JS3 Stick-joint J3 interior angle
\JS2 Stick-joint J2 interior angle
J2L Stick-joint J2 left interior angle
J2r Stick-joint J2 right interior angle
J3l Stick-joint J3 lower interior angle
J2u Stick-joint J3 upper interior angle
\JS9 Stick-joint J9 interior angle
J9l Stick-joint J9 lower interior angle
J9u Stick-joint J9 upper interior angle
stor Torsional shear stress
b2 Transition four-bar coupler link
b1 Transition four-bar follower link
b0 Transition four-bar stationary link
b3 Transition four-bar driver link
T Translation transformation matrix
sb Transverse shear stress
ru Ultimate stress
V Vertical excavator arm lengths
ry Yield stress

xviii Symbols

www.manaraa.com

Introduction to Engineering Informatics

Narges Sajadfar, Yanan Xie, Hongyi Liu and Y.-S. Ma

1 What is Engineering Informatics?

Engineering informatics is an applied information science sub-domain that is
scoped to address information technology (IT) knowledge, methods, models, and
algorithms that support engineering and management activities ranging from
customer requirements to design and production operations. In fact, this sub-
domain overlaps in application scope with the modern product lifecycle man-
agement (PLM) concept [46]. Engineering informatics is a growing domain of
science for industry applications and is intended to address the basic principles of
enhancing the functionality, flexibility, efficiency, and consistency in information
and computer technology (ICT) solutions in engineering. Using IT solutions,
engineering informatics is aimed at increasing engineering quality of products and
the complex associated processes, as well as the management of product lifecycles.
The continued success and progress in this field has become critical to the econ-
omies of many countries because of IT penetration into almost every imaginable
product, project, and work team. The effectiveness and efficiency of IT solutions in
a national industry has a direct effect on the country’s industrial competitiveness in
the global economy. Implementing IT solutions brings changes in almost all
aspects of industry, including the intellectual properties of products and produc-
tion, investment, and human resources. Nowadays, IT has a direct effect on a
country’s development of the information and communication economy; Internet
technology development generates many new jobs.

The implementation of an appropriate engineering informatics framework in a
manufactory requires insight into the heavy volume and timely interactions among
all aspects of engineering management, found across various disciplines, depart-
ments, and geographical boundaries in the current networked information world.

N. Sajadfar � Y. Xie � H. Liu � Y.-S. Ma (&)
Department of Mechanical Engineering, University of Alberta,
Edmonton, AB T6G 2G8, Canada
e-mail: yongsheng.ma@ualberta.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_1, � Springer-Verlag London 2013

1

www.manaraa.com

This chapter introduces several key application areas of engineering infor-
matics: product development, measuring product development performance, and
concurrent and collaborative engineering. Then, to deepen the reader’s apprecia-
tion of a special application domain, computer applications in chemical engi-
neering are reviewed in order to illustrate an industry-specific scenario. Finally, the
two fundamental technologies of engineering informatics, object-oriented (OO)
software engineering and semantic modeling, are briefly introduced.

2 Review of Computer Systems in Engineering Design
and Manufacturing

IT tools are increasingly used for engineering activities, from concept develop-
ment to solving various detailed engineering analysis problems. This trend
imposes great challenges for engineering companies to implement advanced ICT
tools while managing technological evolution and business efficiency. For exam-
ple, one of the basic information system implementation challenges is to manage
continuously generated, complicated, and tedious engineering information in a
consistent data system, such as a unified database [35, 29].

It has been well established that competitive advantages for many enterprises
come from timely product development and cost-effective process development,
both of which are critical for manufacturing. Product development and process
development require a number of complex activities [49]; however, they have to
be aligned with the same objective, i.e., making as much profit as possible for the
company before other competitors enter the market. Therefore, managing product
development and process development with modern information and computer
technologies is a useful way to increase quality and decrease cost and time of
delivery to market.

2.1 Product Development

Product may be usefully defined as anything that can be offered to a market. The
design of a product and its introduction to market is a multi-step process [49]. New
product development (NPD), or the product realization process (PRP), is the
description of the complete process of producing a new product for the market.
The set of activities that makes up NPD begins with the perception of market
opportunities and ends with the production, sale, and delivery of the product [48].
Numerous studies have shown that more than 40 % of new products do not have a
successful launch [2]. As a result, NPD tries to increase the chance of successful
production by effective management of new customer requirements and continual
quality improvement. Research on the performance of NPD shows that product

2 N. Sajadfar et al.

www.manaraa.com

strategy, development process, product policy, market, environment, and pro-
duction activity flow all directly affect success [32]. Therefore, NPD tries to focus
on all of these factors. There are many ways to break down NPD into steps.
However, the majority of them have six primary phases: envision, plan, design,
develop, test, and release [48, 49].

Figure 1 shows the product development processes with five steps [12]. The
first step is market analysis, which involves recognizing market requirements, the
potential of the market, customer requests, the position of the company, and
estimation of the probability of success. This step begins with product definition
[49]. Product definition is essentially identifying bright ideas to meet market
requirements. Primary questions to be answered during the product definition stage
include, what is the target? Who will use this product? How much time is required
to develop it? How many competitors does the company have? Once these have
been answered, the research and development (R&D) department tries to docu-
ment the market requirements into a set of well organized and clustered specifi-
cations and define a path to the solution by gathering detailed market information
and working out the product development process.

The second step is product conceptual design, which considers various aspects
of the product domain such as product variety, quality of product, design, features,
brand name, performance, packaging, and services. Typically, the R&D depart-
ment researches production possibilities and the practicalities of converting the
bright idea to a reality, and evaluates the feasibility of product development.
Innovation is the key responsibility for the R&D department, as an innovative
product can increase company sales significantly. Design and simulations are used
to determine customer and market demands, budgets, and schedules. The goal of
the design phase is finding the best solution to meet all requirements. To prove the
feasibility and the superiority of the chosen solution, product design analyses and
simulations are commonly conducted from different engineering angles, such as
performance, reliability, economics, and so on.

The third step is detailed design, which should include all the details of the
product itself, but must also include related information, including the process
plans, raw materials, works in progress, tooling, machinery, personnel, production,
and delivery schedules. This step may be information dense, but each piece of
information is vital to the product’s success. The product development process?
can be highly iterative. To verify the detailed features of the design, more com-
prehensive product analyses and simulations are conducted than at the conceptual
design stage. If any issue is discovered in the detailed design stage that warrants a

Market
requirement

Conceptual
design

Detailed
design

Analyzing
and testing

Final design
and launch

Fig. 1 Product development process

Introduction to Engineering Informatics 3

www.manaraa.com

revisit of the conceptual design, then a repeated design loop going back to the
conceptual design stage is executed. The evolvement of product development is
often a cyclical round of revisions between conceptual and detailed design stages;
the contents of product definition are also refined gradually from a macro level,
which involves conceptual engineering design, to the micro level, growing pro-
gressively more detailed.

The fourth step is the analyzing and testing stage. As the penultimate step,
testing is usually conducted to ensure that the product achieves the expected
performance and meets quality standards and company expectations [30, 31]. The
goal of this step is to produce the first real product according to the product
definition. This final product development process? attempts to confirm all aspects
of the product definition by verifying all of the previous steps as a prelude to early
market entry, and makes every effort to increase quality and performance and
further reduce production costs. In summary, managing and controlling the
product development process plays an important role in a company’s success.

Finally, if the primary product specifications can be fully validated, and the
product tests are complete, then the manufacturing process can begin [5, 30].

Computer-aided design (CAD), one of the more important technologies in the
computer-aided domain, has been widely used by mechanical industries, such as
automotive and aircraft [48]. The predominant commercial CAD systems are listed
in Table 1 with their geometrical kernels and applied operating systems.

Current CAD software systems are no longer constrained to solid modeling to
assist design activities. Instead, they have become powerful integrated tool
packages that support the whole product lifecycle. For example, the latest version
of NX, V8, is currently embedded with many capabilities, such as industrial design
and styling, mechanical and electromechanical systems design, visual reporting
and analytics, mechanical and electromechanical simulation, tooling and fixture
design, machining, engineering process management, inspection programming,
and mechatronics concept design [41].

Table 1 Key features of popular CAD tools [48]

Company Product Geometrical kernel Operating
system

Class

Autodesk Inventor 2010 Autodesk
ShapeManager

Windows Mid range

Dassault
systèmes

CATIA V6 V6 Windows High range
SolidWorks

2010
Parasolid Windows Mid range

PTC Pro/E GRANITE Windows, Unix Mid range/high
rangeWildfire 5.0

SIEMENS NX 7 Parasolid Linux, High range
Mac OS,
Unix,
Windows

Solid edge Parasolid Windows Mid range

4 N. Sajadfar et al.

www.manaraa.com

Although software tools are becoming progressively more powerful, interop-
erability problems still exist among tools from different vendors. The Standard for
the Exchange of Product model data (STEP) [44] was developed to facilitate data
exchange among various CAD packages. More recently, feature technology has
been extended to solve semantic interoperability in the mechanical engineering
domain, especially considering the downstream manufacturing phase of a prod-
uct’s lifecycle [8, 11, 21, 26, 29, 50]. However, the interoperability problem is still
a barrier for concurrent and collaborative engineering, with the problem even more
serious in chemical process engineering projects, in which regulated works are
specifically confined to conceptual design and detailed design, and each process
takes place in different domains. Unfortunately, little research effort has been
expended on systematic collaboration.

2.2 Measuring Product Development Performance

Managing product development is a challenging activity, because the product
application environment and the demands of the market are in a constant state of
change. Adapting to change is essential for product development; however, these
changes can have a negative effect on product development. As a result, product
management needs tools to measure product development performance and ensure
that the product performs well. Several tools have been implemented in industry to
measure product development performance, such as quality function deployment
(QFD), balanced scorecards, performance diagnosis, and readiness assessment for
concurrent engineering (CE). All of these tools improve decision making during
the product development process [13]. Measuring product development perfor-
mance is a complex activity, but evaluation of the measurement is an even more
important task than the measurement itself. Several tools are available for the
evaluation of product development; the performance measurement evaluation
matrix (PMEX), for example, is a useful tool to help management recognize what
is and what is not being measured. This allows management to make adjustments
to their measuring tools in order to comprehensively cover all aspects of product
development performance.

Current tools for measuring product development have some limitations. These
kinds of tools cannot measure all aspects of the product development process.
There are also no specific definitions for soft and hard measures of product
development performance. The majority of current tools measure internal per-
formances that compare activities and processes to previous operations and targets
[13], but some products need more external performance evaluation, such as
customer use experience. In addition, current tools ignore the specific nature of a
product. Some products need more flexible measuring tools that can be used in all
steps of the product lifecycle. Performance measurement for product development
(PMPD) is a new methodology that tries to clearly identify the measurement of the

Introduction to Engineering Informatics 5

www.manaraa.com

effectiveness of the product development process by considering the traditional
limitations of nonrationalized indicators in management [13, 43].

2.3 Existing Design Data Exchange and Communication
Technologies

Engineering design collaboration in the various engineering phases has been
common practice, including product design, analysis, inspection, and so on.
However, sharing engineering data generated from CAD/CAE/CAI systems is
technically very difficult due to the complexity and size of the data. Furthermore,
many CAD/CAE/CAI systems’ business barriers constructed for market protection
purposes make it very difficult to share data completely for engineering
collaboration.

There are numerous efforts underway to settle on a data standard for collabo-
rative design management. So far, most of the research in this area falls into three
categories. The first category is the development of a neutral product data model
which aims at facilitating product data exchange between CAX systems. The
second category is the development of product data models that embody design
knowledge and rationales, and intend to promote the share and reuse of product
data. The third category is the development of product data models for a particular
design domain or with special purposes. The first category typically applies the
STEP method, which will be further discussed in later chapters. The second and
third categories are introduced in ‘‘A Review of Data Representation of Product
and Process Models’’ and ‘‘Features and Interoperability of Computer Aided
Engineering Systems’’, with the third category presented in sub-sections on
chemical process engineering.

There have been several methods for realizing collaborative design. In this sub-
section, the STEP method for collaborative design and manufacturing is discussed.
This is followed by an introduction to XML-based data processing for collabo-
rative design. Although these methods can solve specific problems in collaborative
engineering, the generic data model still needs to be developed and improved. An
integrated product information database that is accessible and useful to all the
project stakeholders is necessary to support the entire product development
lifecycle.

2.3.1 STEP-Based Method for Design and Manufacturing Data
Exchange

With the rapid development of industry and manufacturing, the tendency toward
economic globalization, cooperation among companies and organizations has
become increasingly important. For instance, the outsourcing of contracts and the
distribution of bills of materials in the collaboration chain have become common,
if not the norm. There is a great deal of product information and data involved in

6 N. Sajadfar et al.

http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_6
http://dx.doi.org/10.1007/978-1-4471-5073-2_6

www.manaraa.com

the process of product design, manufacture, utilization, maintenance, and disposal,
hence product data access between different companies’ computer systems
becomes necessary throughout the entire product lifecycle. A common computer-
interpretable form is therefore required to ensure that the product model remains
complete and consistent when exchanged between different computer systems.
STEP was created to meet this need and has been broadly used in recent
decades [44].

STEP—ISO 10303, independent of any particular system, is a series of related
sub-standards developed by an international network of engineering and IT
experts. It provides a neutral computer-interpretable representation of product data
throughout the product’s lifecycle. STEP is built around an integrated architecture
with many domain-specific application protocols (APs) and well defined, generic,
and integrated template resources. Each AP specifies the representation of product
information for different applications. The APs break STEP into manageable and
comprehensible ‘‘pieces’’ that can be more readily implemented. Accurate and
complete description of products using a common file format, such as STEP, is
essential for fabricating and assembling quality products, because manufacturing is
frequently outsourced. Since STEP provides the basic data exchange standards, the
market has developed a powerful and robust data exchange technology around it.

STEP also specifies the necessary mechanisms and definitions to exchange the
product information into manageable product data. STEP uses a formal specifi-
cation language, EXPRESS, to specify the product information to be represented.
It is expected that several hundred more APs may be developed to support the
many industrial applications that STEP is expected to serve. However, STEP is
very much hard coded with limited generic capability to support collaborative
engineering semantics. It is now recognized that an integrated product information
database that is accessible and useful to all the stakeholders is necessary to support
a product over its lifecycle [44]. A more detailed discussion follows in ‘‘A Review
of Data Representation of Product and Process Models’’.

2.3.2 XML-Based Data Processing for Collaborative Design

Many businesses have used XML-based business-to-consumer (e.g., e-retailing)
and business-to-business (e.g., e-marketplace) solutions to reduce transaction
costs, open new markets, and better serve their customers. The goal of extensible
markup language (XML) was to enable the delivery of self-describing data
structures of arbitrary depth and complexity to applications that require such
structures [40]. XML provides a specification for business-to-business (B2B) e-
commerce data exchange and serves as a common standard for data exchange
across various databases and files. In recent years, due to its connatural advantages
of easy to design, simple expressions and high flexibility, XML technology is
increasingly adopted for product data communication in the engineering fields as
well.

Introduction to Engineering Informatics 7

http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_2

www.manaraa.com

Wang and Ren proposed a prototype system based on XML that is used to realize
data processing in network-supported collaborative design [53]. First, the STEP
data of a product model is converted into XML files. In order to achieve a complete
XML document storage and query process in a relational database, four processing
procedures need to be followed: XML document parsing, mode conversion, query,
and output. A STEP data converter, XML files parser, storage processor, and query
processor should be involved in this system. The structure of the system is shown in
Fig. 2 [53]. In this system, the researchers considered four major modular func-
tions. The STEP data converter provides a common format and a special format for
the XML expression. The XML parser is the basis of information processing for
XML data. Extracting the data and structural information from the text form of
XML documents, the XML parser can generate the tree structure of the XML file
contents. The parser works as an interface for the XML application to instantiate
operational data objects with the information processed. The basic function of the
storage processor is to store the XML document tree as a two-dimensional table
with a mapping scheme. The purpose of the analysis and storage of XML docu-
ments is to support XML functions, such as querying functions. The key mecha-
nism of XML query is transforming different forms of path expressions to query
sentences, which is the main function of the query processor.

2.4 Concurrent and Collaborative Engineering

Concurrent engineering (CE) is a systematic approach to the integration of all parts
of the engineering product and process, such as the parallel production of software
and hardware. The term was coined in the United States in 1989 [42]. CE promotes
consideration of all aspects of the product and through all engineering processes in
order to address increased complexity and reduce the time of delivery to market.
Companies have readily practiced CE for the production of simple products.
However, CE causes many challenges for complex systems, because dependency
relationships between different stages and processes of the development cycles are
easier to manage in a simple product; this is not the case for complex systems.

Fig. 2 The XML-based data processing system for collaborative design [53]

8 N. Sajadfar et al.

www.manaraa.com

Traditionally, in the early stages of product development of complex systems, the
majority of time was spent on design, leaving manufacturing considerations to a
much later stage; this causes problems with fulfilling manufacturers’ design
requirements and delays product release on the market.

The use of CE can decrease the product development cycle time and enhance
design quality comprehensively. There are many definitions of CE, and most of
them emphasize only limited aspects of it. For instance, Thomas [47] suggests that
CE aims for ‘‘the simultaneous performance of product design and process
design,’’ which typically involves the formation of cross-functional teams; this
organizational approach ‘‘allows engineers and managers of different disciplines to
work together simultaneously in developing product and process design’’. As per
the view of a group of Berkeley researchers, CE is ‘‘a business strategy that
replaces the traditional product development process so that tasks are done in
parallel’’ [6]. All definitions of CE, however, have the same goals—reducing the
total product lifecycle time, lead time, and cost—with a secondary goal of
increasing product quality. In addition, globalization and increased product com-
plexity require that more serious attention be paid to CE as a useful approach.

Cost engineering, a basic component of CE, is crucial. Many companies
looking for cheaper production solutions will first determine the total profit and
then plan and schedule accordingly. Scheduling is quite a complex activity due to
the array of conditions that have to be considered. Accurate planning, too, requires
determining an enormous number of details in advance. The key challenge is that
CE must always consider engineering design changes, such as changing the
specifications, complexity evolution, and teamwork mechanisms. To implement
CE, the enterprise needs to constantly keep track of engineering changes. The
company’s production system needs to be more flexible in order to produce a
variety of products; this requirement may lead to replacements of specialized
machine tools with universal ones.

Collaborative engineering is a systematic business approach further developed
from CE, and is designed for collaborative utilization of resources and information
among multidisciplinary groups, or even multiple enterprises across the world, in
real-time. Collaborative Engineering Environments (CEE) can provide the work-
ing platform for ad hoc collaboration and free-flowing processes.

2.5 Lean Manufacturing

Lean manufacturing is a strategy created by Toyota Production System(TPS) in
1980 [37]; the book The Machine that Changed the World introduced lean thinking
in 1990 [56]. Lean manufacturing is an approach that focuses on the identification
of values, finding the existing waste sources in production cycles, analyzing the
cycles, and eliminating the waste sources. As a result of lean manufacturing,
industry can decrease production time, waiting time, re-work, inventory, and
product defects; increase quality, flexibility, and product diversity; save production

Introduction to Engineering Informatics 9

www.manaraa.com

resources; and create new value [36]. These advantages bring significant financial
benefits to companies. Typically, there are several main waste sources in manu-
facturing processes: transport, inventory, motion, waiting time, over production,
over processing, defects, and ineffective production that do not meet customer
requirements [57]. To eliminate the waste among these eight sources and create
value, lean manufacturing uses tools and techniques such as:

• ‘‘Kanban’’ (a Japanese term, i.e. ‘‘Signboard’’—it means a customer require-
ment driven scheduling system for lean and just-in-time production),

• 5 S’s (Japanese words: seiri, seiton, seiso, seiketsu, and shitsuke—English
words: sorting, straightening, shining, standardizing, sustaining),

• visual control,
• ‘‘poke yoke’’ (a Japanese term—error proofing), and
• ‘‘single minute exchange of dies’’ (SMED)—a changeover reduction technique

[33].

2.6 Review of Informatics Modeling Methods
for Concurrent and Collaborative Engineering

To enable concurrent and collaborative engineering, ideally, a semantics-oriented
data repository must be used to record the history of a design as a sequence of
design decisions. The resulting database records the final specifications, the
alternatives that were considered during the design process, and the designers’
rationales for choosing the final design parameters. Nagy et al. did some early
work in this domain, creating a product data representation scheme based on the
issue-based information system (IBIS) method for collaborative mechanical design
[35]. This data representation is composed of four data elements (issue, proposals,
arguments, and decisions) within a computerized design history management tool
(DHT). Figure 3 shows a data representation network.

According to Nagy [35], design issue is a set of problems that need to be solved
in order to complete the design process. The proposals are used to resolve design
issues. An argument is the basic concept that is used by designers to make deci-
sions in support of or in opposition to a particular proposal. A design argument is a
comparison, which can be either absolute or relative. In an absolute comparison,
only one proposal is the focus. A decision may evaluate only one proposal based
uniquely on absolute-type arguments. In a relative comparison, the focus is on a set
of proposals, and the ability of each proposal to satisfy the set of requirements is
compared relative to the other proposals.

Among many research works in this field, You and Tsou [59] proposed an
architecture for a collaborative assembly design, which also adopts STEP-based
data representation and CAD feature extraction. Figure 4 shows the architecture
and conceptual explanations.

10 N. Sajadfar et al.

www.manaraa.com

The client tier provides the exchange for CAD and assembly operations. The
CAD module visualizes the solid model. When the model is built in the server tier,
it is divided into two parts: the intelligent server and the application server. The
application-view model is sent to the client tier using Java shared data toolkit
(JSDT) [45] technology.

The server tier is the core of this structure. All relevant data must be computed
and stored there. The intelligent server performs three main functions:

Fig. 3 Conceptual data representation for collaboration [35]

Fig. 4 Network architecture [59]

Introduction to Engineering Informatics 11

www.manaraa.com

1. The session manager maintains all communication and transfers messages
between session users.

2. The media between the client and the application server are generated by the
JSDT functions, which are supported by the relevant agent components. The
intelligent server stores the IP address of the application server. When a client
user makes a command and the intelligent server receives a request from the
client tier, the corresponding application server will execute the operations. The
result is sent back from the application server, and the intelligent server then
transforms the solid model for viewing and sends it to the client tier.

3. The session data as ‘‘the work model’’ for a session is stored in the intelligent
server. The work model is a basis for executing operations from the client.
When a client joins a session, the intelligent server will send the current view
model to the client for visualization.

The application server is the computing core of this system, building and
operating models. The application server can be divided into three parts:

1. The CAD server reads CAD files and builds the three-dimensional solid model.
2. The assembly server is used to build the order and level of parts in the assembly

model and assemble the parts according to the particular conditions.
3. The data server saves or loads files from the data tier, which includes solid

model files, part files, and assembly model files. The data server controls user
access according to organizational access policies.

In addition to the methods described above, Park and Yang have proposed
another integrated engineering data representation scheme [38] centered on an
integrated engineering data format (‘‘.BST’’) that was designed to meet three main
requirements: it must have all the information that is generated from various
engineering activities; it must have a referencing scheme to ensure each engi-
neering information set created by an individual activity is easily relatable to other
activities’ information sets; and it must maintain the complete data sets used by
individual engineering activities. Figure 5 shows the benefits of integrated engi-
neering data.

Engineering collaboration requires sharing engineering data, which can be
achieved with a data translation server that translates information from various
commercial engineering systems into BST data. This supports not only CAD
translation but also CAM/CAE translation. Figure 6 shows the structure of the
engineering data translation system. The module can translate a variety of 3D
CAD file formats, such as CATIA, PRO/E, SolidWorks, STEP, and so on. How-
ever, this approach lacks a specific semantic structure and the necessary details to
govern the communication language grammar.

Wang and Tang proposed a collaborative product data model (CPDM) [52] to
overcome the shortcomings of the existing product data models. CPDM is
established by extending the popular parametric feature-based product data model.
Because traditional CAx systems usually employ a feature-based parametric data

12 N. Sajadfar et al.

www.manaraa.com

model, CPDM can take advantage of the mature feature technology. The CPDM
consists mainly of three data modules: collaborative design management data,
design coordination data, and product data. It contains seven types of information:
designer information, design agent information, organization information, project

Fig. 5 An integrated engineering data framework for digital engineering [38]

Fig. 6 Engineering data translation system [38]

Introduction to Engineering Informatics 13

www.manaraa.com

information, version, permission, and alternative. Design coordination data con-
tains the information used to coordinate the collaborative product design process.
It contains three types of information: constraint, coordination rule, and history.
Product data contains the product’s structural and physical information, including
assembly and part.

3 Computer Applications Used in Chemical Process
Engineering

3.1 Chemical Process Engineering Project Cycles

The complete design and construction of a chemical process plant, which is
implemented by engineering, procurement, and construction (EPC) companies,
requires collaborative engineering work from different domains [27]. As shown in
Fig. 7, the process starts with business planning, followed by conceptualization,
conceptual design, and process engineering, which provide the input data for the
next phases involving other disciplines, i.e., mechanical design and engineering
and electrical design. Together these form the engineering stage, following which
are the procurement stage and the construction stage, which includes implemen-
tation, commissioning, and maintenance [58].

The complexity lays also in the specific domain, for example, the chemical
engineering domain or mechanical engineering domain [12]. Fortunately, software
tools have been developed to handle the complexities embedded in each phase or
task during the lifecycle of the chemical process engineering project, as shown in
Table 2. In the following section, some commonly used software tools are
selectively introduced, followed by an analysis of the technological coverage gaps
among them.

Fig. 7 Lifecycle activities of chemical process engineering

14 N. Sajadfar et al.

www.manaraa.com

3.2 Domain Software Packages

To appreciate the informatics applications specifically employed in chemical
process engineering, and because of their significant market presence, Aspen and
Intergraph products are reviewed here.

3.2.1 Aspen Packages

Due to the complexity embedded in chemical process design, a great number of the
world’s leading process operation and EPC companies have chosen Aspen to
facilitate process design or optimization [3]. This is mainly due to the two leading
steady-state process simulation software tools offered by this corporation, Aspen
Plus and Aspen Hysys, which have already been widely applied in the design
workflow of EPC companies. A comparison of the two software packages can be
seen in Table 3.

Aspen Plus, a core element in Aspen engineering, has been proven to be an
effective process modeling and simulation tool through more than 20 years’
industrial use in the field. It is already equipped with the world’s largest compo-
nent database with physical properties and phase equilibrium data, and it still
allows users to customize new components as needed. With reliable thermody-
namic data and comprehensive equipment models, the process behavior of the
system can be predicted by Aspen Plus according to engineering relationships built
into the models.

In comparison, Aspen Hysys is an oil- and gas-process-oriented software
package running in an integrated environment with a comprehensive thermody-
namic foundation and a library of unit operation models. It provides a convenient
way to build process flow models with extensive, well-defined component dat-
abases. Based on a process flow model accepted by process engineers, Aspen
Hysys can provide equipment and other operational parameters with certain

Table 2 Supporting
software tools for main
activities in process
engineering lifecycle

Activities Supporting software tools

Conceptual design • SmartPlant P&ID
• Microsoft Visio
• CAD packages

Process engineering • Aspen Plus
• Aspen Hysys
• VMGSIM

Mechanical design • UG NX/CATIA
• Pro/E
• SolidWorks
• Solidedge

Introduction to Engineering Informatics 15

www.manaraa.com

optimization to improve production efficiency and productivity through ‘‘what-if’’
and sensitivity analyses.

It should be mentioned that in the latest version of both Aspen Plus and Aspen
Hysys (Version 7.3), the interoperability among tools offered by Aspen technology
is also enhanced. However, there is still room for further enhancement for both
products by a number of add-on applications.

3.2.2 Intergraph Packages

SmartPlant, which was released by Intergraph, has been used by such owner
operators as Suncor Energy, Nynas, Neste Oil, SCG Chemical Group, and others,
as well as a number of EPC companies, such as Fluor, Bechtel, Foster Wheeler
[19], and others.

SmartPlant 3D [19], as the fundamental component of SmartPlant, provides a
3D visualization and modeling tool for chemical process engineers, changing the
way that traditional process engineers work. SmartPlant 3D is a forward-looking
modeling tool with comprehensive capabilities, customizable design rules, and the
capability to store everything built for future reuse. The graphical representation
generated by SmartPlant 3D benefits the user during the working session; the
perpetual entities created are stored in databases, and the user can easily control
the visibility of each object. This greatly facilitates collaboration between global
engineers across disciplines, and provides contractors with access to the design
process, thereby reducing cost and production time through more efficient project
management. The newest version of SmartPlant 3D is equipped with Reference 3D
and enhanced model reuse capabilities, and now supports PDS, PDMS, SAT,
DGN, DGN V8, DWG, and VUE formats. This means that a number of CAD
models are supported, such as VUE and DWG, the file extensions created by
Autodesk and AutoCAD, respectively. SAT, the file format of ACIS, is also
acceptable; ACIS is a popular kernel used by some mid-range CAD applications.

Table 3 Key features of popular tools in Aspen [3]

Solutions Key features

Aspen Plus • Streamlined engineering workflows for conceptual design to model deployment
• Scalability for large and complex processes
• Column internals calculations for flooding and pressure drop
• Safety and controllability studies and optimization capability
• Capability to model batch distillation and reactors

Aspen Hysys • Physical properties methods and data library
• Assay management and propagation of refinery molecules across the flow sheet
• Comprehensive library of unit operation models
• Pipeline network and pressure drop analysis
• Integration with Aspen PIMS and Aspen Refinery Scheduler software

16 N. Sajadfar et al.

www.manaraa.com

The key features of some popular tools available in the SmartPlant 3D package
are listed in Table 4. Each tool is designed for a specific application domain with
some unique features, as compared to similar software tools from other corpora-
tions. For example, the SmartPlant P&ID module offers an advanced tool to make
piping and instrument diagrams (PIDs) with the capability to keep PIDs up to date
and accessible to all engineers, owner/operators, and EPC contractors, if needed.
With SmartPlant Foundation as their basis, these tools collaborate with each other
to offer customers a powerful portfolio, SmartPlant Enterprise Solution, which can
effectively improve project execution and operation efficiency.

As is apparent in Table 4, one of the advantages of SmartPlant is the inter-
operability between the products and solutions within the platform, as it is based
on a central data warehouse [55]. This allows the importation and distribution of
the data created by application tools, which makes it possible to view combined
3D effects and perform interference checks between models created with different
tools. For example, SmartPlant 3D models for piping design can be created with
reference to the output of SmartPlant PID module, or electrical cable routing from
SmartPlant Electrical module. Furthermore, numerous interfaces have been
developed to further enhance interoperability within SmartPlant or with another
computer system, such as between SmartPlant Instrumentation and a control
system.

Although there are few efforts underway to integrate Aspen with SmartPlant,
these two systems have commonly been adopted concurrently in EPC companies.
They both provide capability for information sharing and design reuse, and hence
facilitate collaborative work between engineers around the world. However,
interoperability between such packages within the chemical process design domain
still needs further enhancement.

Table 4 Key features of popular tools in SmartPlant

Solutions Key features

SmartPlant 3D • Project setup and reference data tasks
• 3D modeling
• Drawing and reports

SmartPlant P&ID • Rule driven design
• Engineering standards support
• Information sharing support

SmartPlant electrical • Power distribution network
• Interface with ETAP
• Interface with SmartPlant 3D

SmartPlant instrumentation • Lifecycle control system solution
• Consistency and quality guarantee
• Interface with leading control systems

SmartSketch • 2D parametrical sketching
• Traditional CAD format support

Introduction to Engineering Informatics 17

www.manaraa.com

3.3 Integration Gaps between Chemical Process Design
and Mechanical Design

In a chemical process engineering project, the traditional workflow includes a
project proposal, chemical process design, engineering design, mechanical design,
operation, and maintenance (see Fig. 8). As an upstream process, the output of
chemical process design will first pass through engineering evaluation, then pro-
vide the design requirements for downstream engineering activities, such as
mechanical design, which determine equipment size, material, and pressure
requirements.

The common challenge in a typical chemical process engineering project is that
the activities involved are interdependent, which leads to the biggest disadvantage
of the traditional sequential working practice: the long lead time and the necessity
for iterative design cycles [20, 56]. To shorten the lifecycle of chemical process

Product

Lifecycle

Management

Business
Planning

Chemical
Process
Design

Process
Engineering

Mechanical
Design

Operation
and

Maintenance

Fig. 8 Work flow of a
chemical process engineering
project

Business Planning

Conceptualization

Procurement

Construction

Process
Engineering

Electrical
Engineering

Project
Conceptual

Design

Mechanical
Engineering

Central
Management

Fig. 9 Collaborative
engineering processes for
EPC

18 N. Sajadfar et al.

www.manaraa.com

engineering, the authors propose a collaborative working process for EPC com-
panies based on collaborative engineering concepts (see Fig. 9).

This approach requires a great deal of interoperability among the software tools
involved, as the process requires a massive number of interactions. Without
interoperability, the impact of each process design decision cannot be evaluated
accurately or efficiently. For example, one parameter change, such as flow rate,
could have a significant impact on downstream mechanical design, which may
lead to high increases in cost or a delay in schedule. Unfortunately, interoperability
currently exists only among tools provided by the same vendor. The computer
system modules listed above need to run in parallel independently, and hence
cause isolated information islands. There is currently no computer system that can
act as a bridge to connect those isolated islands. Moreover, little research attention
has been focused on this topic. There is therefore an urgent need for an architecture
or platform that can provide efficient information sharing to facilitate elements of
collaborative work such as timely communication and information sharing
between chemical and mechanical engineers.

The close connection between chemical process design and mechanical design
requires great interoperability between computer systems across disciplines.
Therefore, to make a chemical process engineering project run smoothly, the tools
listed above must work collaboratively, and the problem of interoperability among
them needs to be addressed. In ‘‘A Review of Data Representation of Product and
Process Models’’, existing technologies to facilitate interoperability are elaborated
upon and a semantic modeling method is proposed. A semantic integration
framework for chemical process engineering is then proposed. Under this frame-
work, engineers from different disciplines and using a variety of software tools
should be able to work collaboratively in a more efficient way.

4 Fundamental Technologies for Engineering
Informatics Solutions

This section briefly reviews the three most important aspects of implementing
engineering informatics solutions: OO software engineering methodology, unified
modeling language (UML)-based informatics conceptualization, and some
potential effective informatics solution drivers, including multifaceted data
repositories, data mining for decision making, and semantic modeling.

4.1 Object-Oriented Software Engineering Methodology

To support CEEs and to work more efficiently and flexibly, we need to change our
software development approach, from the past function-oriented and procedure-
based implementations such as C programming, to an OO approach, such as C++

Introduction to Engineering Informatics 19

http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_2

www.manaraa.com

programming. The OO approach focuses on both data consistency and procedure
encapsulation. It has numerous useful features, including data abstraction, inher-
itance, polymorphism, and dynamic binding. This approach is also useful for
streamlining software development and the reuse of codes and software modules.

4.2 Informatics Modeling Conceptualization with UML

UML is a visual software modeling language used to formulate a model of a
system using all available information and relations [14]. UML is an effective
industry standard at the system engineering level for illustrating software
requirements and complicated interfacing and integration relationships. UML
includes several modeling diagrams, such as use-case diagrams, class diagrams,
and sequence diagrams as demonstrated by Thimm et al. [46]. In their work, UML
diagrams are uniformly used to explain the PLM system modules using a vacuum
cleaner as an example. The next chapter will further discuss the use of UML as an
effective tool for PLM modeling.

4.3 Promising Engineering Informatics Drivers

4.3.1 Multifaceted Data Repository

Organizations have traditionally used data files and documents to store their
information. This kind of data storage is simple and fast, but it creates data
redundancy, lack of flexibility, and poor security; it also impedes data sharing. The
competitive marketplace has forced industries and organizations to find more
effective ways to store, reuse, and analyze data. Organizations and manufacturers
have thus turned to database management systems that can control data and
information more effectively.

A data repository is a logical and physical approach that essentially gathers
together several databases that have the same set of objectives and tasks into one
vast unified database. Many computer systems have data repositories for the
collection and organization of data, but among them, goals and definitions vary.
However, in recent years, industry and the research community have driven a
trend: data repositories are now designed to create a unified information platform
that includes everything from business services and processes to interfaces
between databases. In the latter case, a data repository works to increase the level
of effectiveness in a system. Data repositories need to provide a strong and
comprehensive relation graph among all the data entities to assist in engineering
change updating, constraint evaluation, and decision-making validation by the
supporting systems. In a manufacturing enterprise, having one collaborative data

20 N. Sajadfar et al.

www.manaraa.com

repository that reflects all the available knowledge and information is also useful
for managing the process of updating data in a short period of time [23].

Developing a database management system (DBMS) involves two activities:
conceptual or logical design according to business, market, and organizational
strategies, and physical design. Logical design results in the development of three
main components: a data definition language, a data manipulation language, and a
data dictionary.

A data structure definition language is a formal programming language that
defines the database layout, ideally using an OO language. A data manipulation
language is used to define computer-interpretable queries for interactions with the
database; examples include SQL and Oracle. A data dictionary is a tool for storing
and managing data. In addition to the languages used to run it, physical design can
also focus on creating a united database or a distributed database. Distributed
databases are useful for integrating various resources from collaborators, but can
create redundancy for data contents and relationships among data entities. Fur-
thermore, distributed databases are less secure than single-location databases. Data
mart and data mining are useful methods for searching specific data or finding the
relationships between entities. This kind of information manipulation function is
useful for reusing data and for data synthesis with certain analyses [4].

Although database management systems are useful methods for massive and
persistent data storage, manufacturers need additional tools to support diverse,
distributed, agile, and associated engineering activities with heterogeneous infor-
matics systems. One such tool is a workflow management system, which can
systematically define final outcomes for different types of jobs and processes [1].
Workflow management can support the business process modeling and business
processes reengineering that are necessary for enterprise [16].

4.3.2 Data Mining to Support Engineering Decision-Making

If an enterprise wants to lead in the market, or wants to pursue high-value business
activities, it has to be adaptable to market changes. Decision tree techniques can
help determine what exactly the customer wants from a new product. Decision
trees offer a shortcut through the product lifecycle that offer a company a number
of advantages. When a company begins the process of producing a new product, its
first step is market research, gathering information on markets and customers; data
mining techniques are then used to distinguish unknown information from known
information.

Westphal and Blaxton introduced four primary functions for data mining:
classification, estimation, segmentation, and description [54]. Classification tries
to detect previously unseen record patterns. There are several techniques for
classification data mining, including decision tree methods, rule-based methods,
memory-based reasoning, neural networks, and support vector machines. Esti-
mation is the phase that attempts to fill in missing data. This is sometimes the
result of market research: the information collected is not always cohesive, nor

Introduction to Engineering Informatics 21

www.manaraa.com

does it always display strong or obvious relationships among the data. Estimating
information can serve to fill the gaps between existing pieces of information. The
segmentation step further divides the market, clustering customers according to
various demands, preferences, behaviors, or other demographic data; segmentation
can also be used to cluster products for better control and monitoring of the
database. Finally, description defines the relationships among the data for a more
cohesive database. These four steps in data mining aim to extract vital and useful
information from a database to improve product development.

An example of the use of data mining to support NPD can be found in the work
of Bae and Kim, who researched the use of using data mining techniques in the
production of a new digital camera in 2011 [5]. They used three main steps in their
research framework. The first step was data collection through questionnaires and
surveys. This step aimed to answer the following questions: What are the cus-
tomers’ ‘‘needs’’ and ‘‘wants’’ for digital camera products? What features are
customers looking for in digital cameras? How much money can or will the
customer pay? What kind of strategy must be used in designing a new camera? At
the end of the first step, the researchers determined that there are nine Attributes
that can have a significant effect on customer satisfaction regarding new digital
camera design: price, size, resolution, functions, colors, weight, LED screen size,
battery category, and ease of use.

The second step was model construction by associating rules with the decision
tree. In this step, the researchers developed a decision table with the numerous
statuses for each attribute. The researchers then defined rules for the decision tree,
such as, if ‘‘color = green’’ and ‘‘function = digital zoom or does not matter’’ and
‘‘weight = less than 125 g or 125–320 g,’’ then ‘‘style A is selected’’. According
to this kind of rule, the company could design a digital camera with more tailored
details in the initial design [5]. They could then select one model whose final
design would be the most popular on the market.

The third step was the development of a new product design strategy and a
product variation profile. At this stage, a series of products were selected to form
the product portfolio of a company [5].

4.3.3 Semantic Modeling

In general, engineering activities and manufacturing rely on two types of infor-
mation support: data and algorithms. Careful observation of modern industrial
engineering practice illustrates that many advanced, challenging, knowledge
intensive, and system-oriented activities (such as information sharing, exchanging
data, data mining, and expertise modeling) are carried out on a regular basis.
Manufacturing information services are usually based on separate computer sys-
tems, and cannot provide a consistent, systematic semantic representation of the
continuous manufacturing cycles. Modeling real-world concepts in a virtual
knowledge domain can create an efficient and effective system [9].

22 N. Sajadfar et al.

www.manaraa.com

Semantic modeling is being developed for knowledge classification and pro-
cessing based on modular, OO software engineering methods that are found to be
versatile and useful for engineering informatics modeling. This approach is a kind
of formal knowledge modeling that describes the meaning of data from the user’s
point of view. The objectives of semantic modeling are abstracting knowledge and
understanding the implications of data and information, and then processing them
accordingly. One additional objective of semantic modeling is implementing
highly cohesive informatics models [17]. This section provides a review of
semantic modeling in applications used for product development and process
modeling, and its advantages and disadvantages.

Semantic modeling is a way of mapping the real world onto the virtual world.
There are several forms of information in real-world models, including knowledge,
semantics, features, geometries, and data. Semantic models are similar to graph
models in their ability to bind the semantic objects to physical models. There are
several types of data models that can be used to represent the intricate relations and
dynamic processes of the real world, such as relational, hierarchical, and graph
models coupled with functional algorithms. Each of these models shows the
relationships among entities for software development, runtime queries, and
database-maintenance purposes. Semantic modeling maps such different kinds of
information onto the virtual world.

Figure 10 shows the concept of semantic modeling applied in the product
development domain and illustrates relationships across the real world and the
virtual world. For example, a mechanical component part design has a number of
features. Semantic modeling has to implement cases and express the embedded
design intent of product design via associated attributes. Then it has to define some
classes and class diagrams to create the systematic structural data models for

Fig. 10 Semantic modeling in engineering informatics cycles

Introduction to Engineering Informatics 23

www.manaraa.com

storing parts and assemblies into a product database. Definitions and the semantic
relations of functions, features, data blocks, classes, attributes, and their patterns
must be done clearly [50]. Identifying the representative classes and objects is the
most important part of semantic modeling.

For example, in manufacturing process planning, complicated reasoning is
necessary for the selection of adequate resources, tooling, and the sequencing of
operations for the execution of a part’s production. In such typical engineering
activities, a resource database, a technical machining database, and a CAD data-
base are all necessary for effective process planning. Semantic modeling is
required to facilitate and manage the interfaces between the real world and the
virtual world. One of the important roles that can be played by semantic modeling
is managing the correspondence between different process plans and the details of
part design, including the downstream packaging and labeling of the final product.
Semantic modeling can also be useful as the driving technology for the general-
ization of different products’ design feature justifications as well as individual
parts’ process plans. The feature justifications are useful for evaluating and making
decisions in product change management; individual process plans have to be
effectively synthesized and built into a production plan. A production plan has to
achieve equipment reusability and process coverage for all the required parts.
These two capabilities are vital for connecting the real manufacturing world to the
virtual world.

Semantic modeling can be used to generalize the part designs for reuse in the
real world and to represent the associated reusability in the virtual world. The
virtual world also needs to store data and information in a database; this can also
be effectively carried out through semantic engineering. For example, the software
routines must be reusable. Achieving a high level of code reusability in software
engineering is a complex task. Object-oriented software engineering methodology
is a well-proven method that can support reuse of templates, dynamic linking of
libraries, inheritance of parent entities, and polymorphism. Hence, the method can
manage data structures, functions, and scenario changes by defining classes and
implementing object dynamic processing methods. In such a way, both product
Attributes and algorithm information can be reused in the virtual world [39].

There are several approaches to semantic modeling. For instance, Zhang
introduced a practical definition with two predicates and three connectives [60].
However, the authors feel that Zhang’s approach has limitations in dealing with
the complexity of problems in engineering informatics; a semantic model needs to
satisfy the following rules to create a comprehensive mapping between the real
world and the virtual world:

• All the entities and process steps of semantic modeling must be clearly defined.
• There must be a consistent and reproducible mutual corresponding scheme in

designing an abstract model that can map between the real world and the virtual
world.

• The semantic modeling items must be defined and directly mapped with an
object, which in turn is defined by a class that is part of the domain-related class

24 N. Sajadfar et al.

www.manaraa.com

diagram. We strongly believe a class diagram is a useful tool for abstract
modeling, and the relationships built in are implemented into related class
definitions.

• A semantic model must specify all the relationships and interactions among the
modeled objects to describe the logics of a semantic model [10].

Even if a semantic model follows all of the above rules, it still may encounter
some problems. A semantic model is usually defined from a specific point of view,
such as that of the product designer. Semantic models of a single product can
therefore differ from each other due to their different purposes, which can lead to
different models of the same product. Certain mutual transformation mechanisms
need to be developed to manage the associations among semantic models. The
other potential problem is that constructing a working semantic model requires an
engineering expert who understands the Object-oriented modeling concept. For-
tunately, this expert’s contribution does not necessarily require detailed informa-
tion about process and product development.

There are several approaches to constructing a semantic product model [24].
The first is to use a tree structure of the top assembly, sub-assemblies, and com-
ponents. This model divides the product entities into the above-mentioned classes.
Top-level assembly is a total combination of the product with two or more sub-
assemblies, in which each sub-assembly must be defined with specific functions or
purposes. The assembly or sub-assembly level can also include additional com-
ponents; an assembly and a component must be clearly distinguished.

An alternative semantic modeling structure is a dual representation of con-
ceptual-detail product entities. This model has two associative levels: the con-
ceptual model and the data structure model. The conceptual model represents the
relationships between Attributes and entities in Object-oriented class/object dia-
grams. This model is a useful tool for developing and understanding informatics
modeling concepts. The second level consists of a more detailed implementable
data structure model. For example, to develop a semantic model for a manufac-
turing management system, a conceptual model is usually required to illustrate the

Fig. 11 Conceptual process model of handling customer orders

Introduction to Engineering Informatics 25

www.manaraa.com

definitions and relationships of an organization’s departments or units, while the
detailed model represents the database design table schemas. Figure 11 shows a
simplified example of a conceptual process model of handling customer orders.

A third semantic modeling structure for products is based on a component tree
structure model, which distinguishes in-house-manufactured from outsourced
parts. When manufacturers want to design a part in-house, they use a specific
system of modeling that incorporates the company’s standards and conditions.
However, for outsourced parts, the purchasing company only needs to select or
preliminarily specify the outsourced parts with a set of attributes that describe the
quality and properties of the part according to the demands of the market or their
business strategy. In this situation, it is the supplier’s responsibility to design the
outsourced part in detail according to the prescribed specifications.

The fourth structure for semantic modeling is created by leveraging relation-
ships among the conceptual, detailed, or manufacturing features [7]. There are
numerous ways to define features [15, 23, 29]; here, feature is defined as a specific
associative geometric pattern or configuration formed to reflect a certain mean-
ingful semantic entity for certain engineering reasoning. In keeping with this
definition, there are several ways to model a feature. In general, feature modeling
is a useful technique for analyzing a product line [14]. A conceptual feature model
is a set of simplified or abstracted modeling features that are expressed by refer-
enced member elements and their interdependencies. According to Vranic [50], a
feature-based semantic model involves two domains: application and solution
domains. CAD programs have a number of predefined features, but they are not
intended to provide rich engineering semantics, such as manufacturability attri-
butes and evaluation methods; rather, most CAD features are meant only for
geometry construction. Any manufacturing company that wants to capture and
reuse its practical ‘‘know-how’’ needs to achieve a high level of semantic modeling
competency; the company needs to define and develop a set of features according
to the available manufacturing technologies and resources. The company has to
incorporate many decision-making attributes, such as the justification attributes for
any selected process, into the company-wide semantic model for reasoning pur-
poses [25].

5 Summary

This introductory chapter presented the context of engineering informatics. The
chapter first reviewed the industrial reality of the application of computer-aided
solutions, with a special emphasis on chemical process engineering as a sample
sector. The challenges and research directions for engineering informatics have
been clearly identified. Based on the increasing use of information technologies,
such as multifaceted data repositories, data mining, and semantic modeling, the
potential leveraging applications that could significantly increase the effectiveness

26 N. Sajadfar et al.

www.manaraa.com

of engineering informatics applications have been projected. While only minimal
space was devoted here to engineering informatics itself, the remaining chapters
will address the topic in greater detail.

References

1. Abbott KR, Sarin SK (1994) Experiences with workflow management: issues for the next
generation. In: Proceedings of ACM CSCW 84, Chapel Hill, North Carolina, USA

2. Adams M (2004) Comparative performance assessment study. In: Proceedings of the
presentation at the comparative performance assessment conference, PDMA Foundation

3. Aspentech (2012) http://www.aspentech.com/
4. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream

systems. In: Proceedings of ACM PODS, Madison, Wisconsin, USA
5. Bae J, Kim J (2011) Product development with data mining techniques: a case on design of

digital camera. Expert Syst with Appl 38:9274–9280
6. Berkeley (2012) http://best.berkeley.edu/*pps/pps/concurrent.html
7. Bidarra R, Bronsvoort WF (2000) Semantic feature modeling. Comput Aided Des

32:201–225
8. Bronsvoort WF, Noort A (2004) Multiple-view feature modeling for integral product

development. Comput Aided Des 36:929–946
9. Cai M, Zhang WY, Chen G, Zhang K, Li ST (2010) SWMRD: a semantic web-based

manufacturing resource discovery system for cross-enterprise collaboration. Int J Prod Res
48:3445–3460

10. Chan FTS, Zhang J (2001) Modeling for agile manufacturing systems. Int J Prod Res
39:2313–2332

11. Chen G, Ma YS, Thimm G et al (2006) Associations in a unified feature modeling scheme.
ASME Trans J Comput Inf Sci Eng 6:114–126

12. Contea E, Gania R, Malikb TI (2011) The virtual product-process design laboratory to
manage the complexity in the verification of formulated products. Fluid Phase Equilib
302:294–304

13. Driva H, Pawar KS, Menon U (2000) Measuring product development performance in
manufacturing organizations. Int J Prod Econ 63:147–159

14. D’Souza DF, Wills AC (1999) Objects, components, and frameworks with UML—the
catalysisSM approach. Addison Wesley Longman, Reading, Massachusetts

15. Geelink R, Salomons OW, van Slooten F, van Houten F, Kals HJJ (1995) Unified feature
definition for feature based design and feature based manufacturing. In Busnaina A (ed)
Comput in Eng, ASME Conf., 517–533

16. Georgakopoulos D, Hornick M, Sheth A (1995) An overview of workflow management: from
process modeling to workflow automation infrastructure. Distrib Parallel Databases
3:119–153

17. Hanis T, Noller D (2012) The role of semantic models in smarter industrial operations. IBM
DeveloperWorks. http://www.ibm.com/developerworks/industry/library/ind-semanticmodels/
ind-semanticmodels-pdf.pdf. Accessed 18 Nov 2012

18. Herder PM, Weijnen MPC (2000) A concurrent engineering approach to chemical process
design. Int J Prod Econ 64:311–318

19. Intergraph (2012) http://www.intergraph.com/
20. Jouini BM (2004) Time-to-market vs. time-to-delivery: managing speed in engineering,

procurement and construction projects. Int J Proj Manag 25:359–367
21. Kima J, Prattb M, Iyer RG et al (2008) Standardized data exchange of CAD models with

design intent. Comput Aided Des 40:760–777

Introduction to Engineering Informatics 27

http://www.aspentech.com/
http://best.berkeley.edu/~pps/pps/concurrent.html
http://www.ibm.com/developerworks/industry/library/ind-semanticmodels/ind-semanticmodels-pdf.pdf
http://www.ibm.com/developerworks/industry/library/ind-semanticmodels/ind-semanticmodels-pdf.pdf
http://www.intergraph.com/

www.manaraa.com

22. Körtgen A, Nagl M (2011) Tools for consistency management between design products.
Comput Chem Eng 35:724–735

23. Lee SH (2005) A CAD–CAE integration approach using feature-based multi-resolution and
multi-abstraction modeling techniques. Comput Aided Des 37:941–955

24. Leibrecht S, van Pham T, Anderl R (2004) Techniques for the integration of expert
knowledge into the development of environmentally sound products. J Eng Des 15:353–366

25. Lohtander M, Varis J (2007) Manufacturing features in cutting shapes and punching holes in
sheet metal. In: Proceedings of the 19th international conference on production research,
Valparaiso, Chile

26. Ma YS, Bong CH (2010) Fine grain associative feature reasoning in collaborative
engineering. Int J Comp Appl Technol 37:210–216

27. Ma YS, Hadi Q (2012) Unified feature based approach for process system design. Int J Comp
Integr Manuf 25:263–279

28. Ma YS, Tong T (2003) Associative feature modeling for concurrent engineering integration.
Comput Ind 51:51–71

29. Ma YS, Chen G, Thimm G (2008) Paradigm shift: unified and associative feature-based
concurrent and collaborative engineering. J Intell Manuf 19:626–641

30. Marion TJ, Simpson T (2009) New product development practice application to an early-
stage firm. Des Stud 30:256–587

31. Marion TJ, Friar JH, Simpson TW (2012) New product development practices and early-
stage firms: two in-depth case studies. J Prod Innov Manag 29:639–654

32. McCarthy IP, Tsinopoulos C, Allen P, Rose-Anderssen C (2006) New product development
as a complex adaptive system of decisions. J Prod Innov Manag 23:437–456

33. Melton T (2005) The benefits of lean manufacturing—what lean thinking has to offer the
process industries. Trans IChemE Part A, Chem Eng Res Des 83:662–673

34. Morbach J, Yang A, Marquardt W (2007) OntoCAPE: a large-scale ontology for chemical
process engineering. Eng Appl Artif Intell 20:147–161

35. Nagy RL, Ullman DG, Dietterich TG (1992) A data representation for collaborative
mechanical design. Res Eng Des 3:233–242

36. Nasab HH, Bioki TA, Zare HK (2012) Finding a probabilistic approach to analyze lean
manufacturing. J Clean Prod 29–30:73–81

37. Ohno T (1988) Toyota production system. Productivity Press, Portland
38. Park J, Yang S (2008) Collaborative engineering and product quality assurance based on

integrated engineering information management. In: Proceedings of international conference
on smart manufacturing application

39. Ramaraj E, Duraisamy S (2007) Design optimization metrics for UML based object-oriented
systems. Int J Softw Eng Knowl Eng 17:423–448

40. Renner A (2001) XML data and object databases: a perfect couple. In: Proceedings of the
17th international conference on data engineering, IEEE, Heidelberg, Germany

41. Siemens (2012) http://www.plm.automation.siemens.com/
42. Sohlenius G (1992) Concurrent engineering. CIRP Ann Manuf Technol 41:645–655
43. Stage-Gate (2012) Measuring and improving product development performance and

practices. http://www.stage-gate.eu/article-how-to-measure-innovation.asp. Accessed 18
Nov 2012

44. STEP application handbook ISO 10303 Version 3. 30 Jun 2006
45. Sun Microsystem Inc. (2012) Java shared data toolkit API 2.0. http://java.sun.com/products/

java-media/jsdt/. Accessed 28 Aug 2012
46. Thimm G, Lee SG, Ma YS (2006) Towards unified modeling of product life-cycles. Comput

Ind 57:331–341
47. Thomas S (2001) Managing quality: an integrative approach. Prentice Hall, New Jersey
48. Tornincasa S, Di Monaco F (2010) The future and the evolution of CAD. In: Proceedings of

14th international research/expert conference: trends in the development of machinery and
associated technology

28 N. Sajadfar et al.

http://www.plm.automation.siemens.com/
http://www.stage-gate.eu/article-how-to-measure-innovation.asp
http://java.sun.com/products/java-media/jsdt/
http://java.sun.com/products/java-media/jsdt/

www.manaraa.com

49. Ulrich K, Eppinger S (2011) Product design and development. http://www.ulrich-
eppinger.net/

50. Vranic V (2004) Reconciling feature modeling: a feature modeling metamodel. In:
Proceedings of net object days, pp. 122–137

51. Wang H, Xiang D, Duan G et al (2007) Assembly planning based on semantic modeling
approach. Comput Ind 58:227–239

52. Wang J, Tang MX (2007) Product data modeling for design collaboration. In: Proceedings of
11th international conference on computer supported cooperative work in design

53. Wang Q, Ren Z (2010) XML-based data processing in network supported collaborative
design. Int J Autom Comput 7:330–335

54. Westphal CR, Blaxton T (1998) Data mining solutions: methods and tools for solving real-
world problems. Wiley, New York

55. Wiesner A, Morbach J, Marquardt W (2011) Information integration in chemical process
engineering based on semantic technologies. Comput Chem Eng 35:692–708

56. Womack JP, Jones DT, Roos D (1990) The machine that changed the world. Free Press, New
York

57. Womack JP, Daniel TJ (2003) Lean thinking. Free Press, New York
58. Yeo KT, Ning JH (2002) Integrating supply chain and critical chain concepts in engineer-

procure-construct (EPC) projects. Int J Proj Manag 20:253–262
59. You CF, Tsou PJ, Yeh SC (2007) Collaborative design for an assembly via the internet. Int J

Adv Manuf Technol 31:1217–1222
60. Zhang L (2009) Modelling process platforms based on an object-oriented visual

diagrammatic modeling language. Int J Prod Res 47:4413–4435

Introduction to Engineering Informatics 29

http://www.ulrich-eppinger.net/
http://www.ulrich-eppinger.net/

www.manaraa.com

A Review of Data Representation
of Product and Process Models

Narges Sajadfar, Yanan Xie, Hongyi Liu and Y.-S. Ma

1 Product Modeling Methods

As a type of semantic data model, a product data model is a set of data in a
consistent data structure that ideally represents product information efficiently,
effectively, and concisely [8, 20]. In the current information era, a product data
model should satisfy the technical and quality requirements of the whole product
lifecycle. Engineers and manufacturers need a product data model that has a
common, unified, and global definitions of the product information resources and
also can be interpreted by various computer programs. In recent decades, a variety
of product modeling methods and incidental software has been created, developed,
improved, and used effectively. The main methodologies can be categorized into
four classes: solid product modeling, feature-based product modeling, knowledge-
based product modeling, and integrated product modeling methodologies [42].

1.1 Solid Product Modeling

Solid product modeling was created as a technology to precisely embody 3D
product geometry information. The most common solid product modeling methods
are boundary representation (B-Rep) and constructive solid geometry (CSG) [42].
The B-Rep modeling method uses a model to bound the edge and vertices of the
solid object in order to clearly store and speedily display geometric information,
including the faces, edges, and vertices in the representation. In contrast, the CSG
modeling method is based on primitive solids (e.g., cubes, cylinders, and spheres).
Boolean operators are used to define a set of operations to put together a complex

N. Sajadfar � Y. Xie � H. Liu � Y.-S. Ma (&)
Department of Mechanical Engineering, University of Alberta,
Edmonton, AB T6G 2G8, Canada
e-mail: yongsheng.ma@ualberta.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_2, � Springer-Verlag London 2013

31

www.manaraa.com

product solid model by adding or subtracting volumes. The common operations
are union, subtraction, supplementary set, and intersection. The CSG modeling
method can define objects with a relatively concise and simple data structure.

Solid modeling methods are now very mature, and are widely utilized in
various product development phases. However, because solid modeling concen-
trates on geometric details, it lacks the functionality to present other information
indispensable to the entire product development lifecycle. To solve this problem,
the feature concept was created and has since been utilized in many computer-
aided product modeling processes.

1.2 Feature-Based Product Modeling

1.2.1 Definition of Feature Concept

A feature ‘‘represents engineering meaning or significance of the geometry of a
part or assembly’’ [32]. Features can be understood as information sets that refer to
aspects of form or other attributes of a part. A feature can be thought of as a
representation of an engineering pattern that contains the associations of the
relevant geometry data with other kinds of data, such as manufacturing data, in
order to provide sufficiently rich and versatile information and to speed up product
engineering processes. It therefore represents a great improvement over B-Rep and
CSG techniques [5, 17].

1.2.2 Definition of Feature Model

A feature model is a data structure that is comprised of a variety of types of
features. These features are all recognizable entities that have specific represen-
tations. The choice of features depends on what function the feature model is
intended to support. Additional features can be added into the feature model
according to new requirements. For example, manufacturing companies can
choose a specific range of machining features that include the geometry to be
produced and the related nongeometric technical information. Such a manufac-
turing feature model is not only related to the manufacturing requirement for
customizability but also makes feature technology more influential in related
industrial applications [32].

1.3 Knowledge-Based Product Modeling

Knowledge-based product modeling uses Artificial intelligence technologies to
model product development expertise and rules and to automate the many logical
reasoning and optimization processes of engineering design and manufacturing.

32 N. Sajadfar et al.

www.manaraa.com

Systems developed using this approach can also store a large amount of information
and knowledge about previous designs, which can help avoid unnecessary time
spent on planning and redesign. This approach can be used to simplify the modeling
tasks and enhance modeling quality. Although capturing, representing, and using
knowledge is both costly and risky, knowledge engineering plays an important role
in business globalization and product development.

1.4 Integration-Based Product Modeling

The integrated product modeling methodology can be considered a functional
combination of several modeling methods by associating data and processes of
engineering in a systematic approach. All kinds of product data, including feature
information, geometric data, and product knowledge, can be modeled and stored in
a comprehensive and thoroughly integrated product model. This is an active
research domain; the modeling methodology is not well established and still needs
to be explored systematically.

1.5 Data Requirement in Product Lifecycle Management

Product lifecycle management (PLM) is the business activity of managing
production effectively, from the initialization of a product to its withdrawal from
the market. Full PLM involves various applications and several complex pro-
cesses. It has to support cyclic engineering process modeling in order to represent,
exchange, reuse, and store knowledge, and track decision-making processes in all
application domains. To achieve these goals, PLM needs information technology
(IT) to support its connections and a central data repository for gathering all the
information during data exchange at all stages of manufacturing and production.
IT services have to connect PLM to the product design and analysis processes.
PLM also needs to have a relationship with the supply chain process, which
includes processes such as enterprise resource planning (ERP), customer rela-
tionship management (CRM), supply and planning management (SPM)), and
component supplier management (CSM) [28]. Information and communications
technology (ICT) can support PLM to cover product process such as holding,
retrieving, manipulating, sending, or receiving knowledge. In a new PLM
paradigm, PLM is defined as an integrated business model that employs ICT
technologies and implements an integrated cooperative and collaborative man-
agement system for product-related information throughout the entire product
lifecycle, from a product’s conceptualization until its dismissal. In this paradigm,
ICT solutions are expected to bring many advantages for PLM, including customer
satisfaction requirements, reduced time-to-market for new products, and decreased
environmental issues in product manufacturing [13].

A Review of Data Representation of Product and Process Models 33

www.manaraa.com

2 Data Repository

Every computer system must have a data repository for the collection and
organization of data [20]. The advantage of storing information in a data repository
is that it creates a supporting module in a demanding information system with a
high level of data organization and reusability. Usually, the database involves
several tables where each row stores the same sort of information. The tables can
reference each other by building in data relationships. Each table holds the
information about a particular entity, which is a virtual data representation of an
existing artifact that is important to the application system and on which the
database wants to keep information. To achieve the advantage of efficient data
access and storage, a data repository needs data schema to efficiently manage
information that can support reusability.

A modern networked data repository is a logical and physical facility that can
be a collection of databases with objectives and tasks combined into one vast
unified database. It can also be defined and developed as a unified and global
business solution from customer services to manufacturing and shipping, which
are essentially managed by accurate information interaction processes interfacing
many database entities. A data repository needs to provide a strong and compre-
hensive relationship among all the data to help with decision-making and decision-
support systems (DSS). Having one data repository that reflects all the information
and knowledge in a system is useful for updating data quickly and efficiently [25].

A data repository can also bring competitive advantages for businesses. When
several companies or organizations want to improve their business collaboration
relations, they can use the semantic repository approach to integrate with each
other via their databases. A semantics-oriented engineering data repository can
support the complex and dynamic engineering and business information flows
among associated and networked databases in the modern economy. For instance,
the ICT project aiming to decrease the distance between government and business
is using the semantic data repository approach. Figure 1 shows a few key com-
ponents of a semantic data repository [24].

A data repository consists of data records and interrelated tables [45]; therefore,
a data repository first needs to collect data. Although modern informatics tools
enable active data collection, such as Web-based data crawling from numerous
sources, the majority of engineering systems use passive data collection, such as
designing a specific application programming interface (API) function to extract
information from existing data sheets or files. The data gathered through active or
passive data collection is initially stored in a local storage system, but needs to be
integrated into a networked data repository to support accessibility expectations.
At the end of the collection process, the data is accumulated and ready for use.
In addition, the type of data source determines the structure and the module of data
storage. Because a data repository has to keep data current and consistent, it will
be designed to trace data change impact and schedule data updating procedures

34 N. Sajadfar et al.

www.manaraa.com

constantly and dynamically with a generic ‘‘road-map’’. Scheduling frequent data
access and updates requires the prioritizing of data operations [45].

Operating on a larger scale than can be managed by a database, data ware-
houses are a kind of optimal data repository system that include historical and
static data. ‘‘Data warehouses are built in the interests of business decision support
and contain historical data, summarized and consolidated from detailed individual
records’’ [31]. A data warehouse can also be defined as an abundant database that
combines distributed operational data in one place, linking a collection of subject-
oriented data with the original sources. The objective of warehouse design is to
provide a database that can support different kinds of applications such as decision
making, online analytical processing (OLAP), data mining, and (DSS) [6].

2.1 Engineering Database Technology Status

Implementing an engineering data repository system requires designing data
integration schemes and interfacing information sources that can be in a variety of
forms, such as artifacts, functions, failure signals, physical objects, performance
indicators, sensory input, and media related records. The scheme designer has to
select the best type of category to store and extract data. For instance, in a product
database [3], function type is useful for describing product features or finding an
existing product. After the type of category has been selected and the schema
designed, the database tables must then be designed. A design repository can store
two types of data: artifacts and taxonomies. An artifact contains the field name
and data type, and a serial-based ID as in a typical database. A serial ID makes a
unique number for each artifact stored in the database, and data can be extracted
according to this ID. Taxonomies, by contrast, make data interpretable by asso-
ciating more information together such as a product’s color, parameter, functions,
material, and/or sensors. In addition, a design repository can support inheritance
relationships to organize the inherited Attributes. Figure 2 shows a representation
diagram of data repository tables. Usually, a repository model needs to be
implemented into a structured query language (SQL) compatible database or a set
of networked databases [3].

Fig. 1 Layers of a semantic
repository of services [24]

A Review of Data Representation of Product and Process Models 35

www.manaraa.com

2.2 Data Repositories in Integrated Systems

Collaborative engineering is a systematic business approach that facilitates the
exchange of useful sources and information-sharing for multi-disciplinary groups
in real time [23]. A data repository supporting collaborative engineering must be
designed to support dynamic data interactions, which requires integration and
collaboration tools [18]. Information integration for a product model can have
different layers of data granularity, i.e., functional applications, dynamic and
persistent information entities, structural representations, and physical storage
records, as suggested by Tang [35]. The application layer (AL) is the top layer,
which contains various feature-based functional applications. The information
layer consists of a feature-oriented meta-product model, unified feature compo-
nents, application feature components, and STEP EXPRESS-based [14] specifi-
cations. The representation layer keeps the relation between EXPRESS-defined
and database schema. The physical records layer forms the basis of a data
repository, which includes feature properties and geometrical entities. The data
repository can exchange and share information with various levels of granularity.
For instance, the data repository can call on interactive system class methods

Fig. 2 Graphical view of repository database tables [3]

36 N. Sajadfar et al.

www.manaraa.com

(functions) to synchronize data transactions between computer-aided design
(CAD) systems and their databases. The goal of the integrated engineering data
repository is to support concurrent engineering activities, such as design phases
and CAx analyzes, and to reduce the cost and time involved in data management.
In general, this kind of repository can use an Internet browser as a front end, and
can interface with application servers. Figure 3 compares the traditional CAD
structure and proposed CAx structure [18].

Efficient information sharing and data interchange can create competitive
advantages for companies and organizations. One of the most notable companies
that focuses on collaboration in the supply chain is Dell. Dell has a unique supply
chain management system, which has created outstanding sales for Dell. It uses the
direct sales system to build exactly the product that the client wants. The computer
industry grows significantly every year, but rapid technology changes are to the
disadvantage of this industry. Dell must therefore keep little inventory and
introduce new products to the market quickly. Dell fosters a close relationship with

Fig. 3 Comparison of
traditional and proposed CAx
structure [18] a Traditional
CAD structure. b Proposed
CAx structure

A Review of Data Representation of Product and Process Models 37

www.manaraa.com

its suppliers and uses five key strategies to create a unique supply chain: rapid time
to accommodate low-volume orders, customized products built to order, elimi-
nation of the retailer, superior services, and support, and low inventory and low
capital investment [10].

3 Informatics Modeling in Chemical Process Engineering

In a typical chemical process engineering (CPE) development project, such as
designing a refinery facility, thousands of process flow diagrams (PFDs), piping
and instrument diagrams (P&IDs), electrical circuit diagrams, and mechanical
engineering drawings are generated during the design, engineering, and con-
struction phases of the project. There is a host of information embedded in these
diagrams and engineering documents which also serves in the downstream phases,
such as equipment procurement, construction engineering, operation, and main-
tenance, as either input or reference. Currently, most engineering documents are
generated with domain-specific software applications, such as SmartPlant and
Aspen. In such projects, it is necessary that the effective flow of engineering
semantics, not just the data, be achieved via an integrated computer system
throughout each CPE project.

3.1 Embedded Semantics and Issues in CPE Documents

A CPE project involves a series of development phases across various departments
and disciplines. Domain-specific software applications are used to complete the
activities in each phase but also to generate heterogeneous data sources [40]. The
typical engineering documents generated in a chemical engineering project are
summarized in Table 1, from a very general block diagram to a detailed flow
diagram. Some of these documents have semantic information beyond one specific
domain, i.e., chemical engineering alone. For example, a P&ID specifies many
relevant semantic constraints for mechanical engineering and electrical engi-
neering as well. Data files, such as spreadsheets or a 3D process model, provide
even more detailed specifications to downstream engineering activities. A variety
of types of flow sheet can be found in the work of Ludwig [15].

To generate more and more detailed engineering designs, engineering activities
involved in the chemical process project often use information from those data
files resulting from earlier engineering phases. Associations between activities
involved and files generated are shown in Fig. 4, with three critical activities
(conceptual design, process engineering, and mechanical engineering and design)
as an illustration.

One major problem faced by engineers is the conflict among intense associa-
tions and the heterogeneity of data sources. As illustrated in Table 1, the data files

38 N. Sajadfar et al.

www.manaraa.com

generated by CPE projects come in a variety of formats, including unstructured
data, semi-structured data, and structured data; this situation leads to structural
heterogeneity [15, 22, 36]. For example, the requirement analysis document used
at the start of a chemical process project is an unstructured data source, while the
specification in the spreadsheets is a kind of semi-structured data source, and the
data stored in the databases of, for example, SmartPlant 3D belongs to a structured
data source.

To make the engineering processes even more complicated, differences also
exist in the interpretation of the semantics of the data, which leads to another level
of heterogeneity, called semantic heterogeneity [11]. For example, process engi-
neering requires PFDs, and the information embedded in them is used as the input
for process simulations; the simulation results will in turn influence the conceptual

Table 1 Semantics embedded in a typical data sources in chemical process engineering

Engineering documents Software tools Semantics

Input/output flow
diagram (IOFD)

Any flow chart packages,
e.g., MS Visio

Raw materials
Reaction stoichiometry
Products

Block flow diagram
(BFD)

Any flow chart packages,
e.g., MS Visio

Everything above, plus:
Materials balances
Major process units
Process unit performance

specification
Process flow

diagram (PFD)
Any flow chart packages,

e.g., MS Visio
Everything above, plus:
Energy balances

CAPE packages, e.g.,
Aspen

CAD packages Process conditions (T & P)
Major process equipment

specification
Process & instrument

diagram (P&ID)
Any flow chart packages,

e.g., MS Visio
Key piping and instrument

details
Process control schema

SmartPlant P&ID Symbol representation of all
equipment and components involvedCAD packages

Mechanical flow
diagram (MFD)

Any flow chart packages,
e.g., MS Visio

Pipe specification
All valves (sizes and types)

CAD packages Operation condition specification
Spreadsheets Any spreadsheet packages,

e.g., MS EXCEL
Engineering calculations
Materials balances
Process conditions
Detailed equipment specification

3D process
model

SmartPlant 3D Piping routing and specification
Process conditions
Process equipment and component

topological and geometrical features

A Review of Data Representation of Product and Process Models 39

www.manaraa.com

design activity. To implement the downstream mechanical engineering design
(ME&D) with the accurate interpretation of the constraints embedded in data, i.e.,
using the semantic information, consistency-checking with the data sources in the
conceptual design phase has to be achieved.

Meanwhile, the output of the ME&D, i.e., the 3D models as well as the
specification sheets, need to be interpreted face-to-face by engineers in order to
provide information feedback for conceptual design.

As discussed in chapter ‘‘Introduction to Engineering Informatics’’, some
neutral data formats have been developed to deal with geometry heterogeneity,
such as the STEP standard, but they can do nothing with semantic heterogeneity.
Existing feature technology has improved interoperability between heterogeneous
applications but still has limited capability to handle semantic heterogeneity. This
is due to the fact that, currently, feature semantics has not been well-defined or
maintained [2]. The lack of semantic interoperability may lead to severe infor-
mation loss and, further, economic loss due to potential operation breakdown and
maintenance.

To achieve interoperability on the semantic level, a specification of the inter-
pretation of terminology used in different computer-aided systems has to be
formalized [40]. However, there is little, if any, representation of semantics
embedded in the data files generated with the existing software packages. Fortu-
nately, the increasing research trend in semantic modeling, which covers semantic
conceptual schema with embedded semantic information, provides reason for
optimism in overcoming the semantic interoperability problem.

P&ID

Specification
Sheet

Conceptual
Design

Process
Engineering

Mechanical
Engineering &

Design

3D
Mechanical

Model

PFD

3D Process Model

MFD

Simulation
Results

Requirement sheet

Fig. 4 Associations between activities involved and files generated

40 N. Sajadfar et al.

http://dx.doi.org/10.1007/978-1-4471-5073-2_1

www.manaraa.com

3.2 The Current State of Informatics Modeling Research
in CPE

The emerging informatics methodologies for the integration of CPE activities,
including mechanical engineering activities, lead in two different directions.

On the one hand, semantic modeling (which comes from the domain of soft-
ware engineering, as does the development of database design theory) is now
applied in many other disciplines, including CPE and mechanical engineering. In
the chemical engineering domain, ontology has been applied to facilitate semantic
technology [21, 40]. A large research project, IMPROVE, is being conducted in
Germany, with a goal of developing a collaborative environment for CPE based on
ontology [12, 21, 40]. A flexible and extensible data structure is also proposed to
apply to heterogeneous and distributed data. With the knowledge representation
capability embedded, it provides a basis for knowledge engineering to incorporate
knowledge to guide the activities. Semantic modeling offers a common ground to
enable interoperability for both disciplinary domains. However, there is currently
no formal definition of semantic modeling. Semantic modeling is understood in the
engineering domain to be the information-modeling activities that develop a high-
level representation of semantic schema, which provides specifications for the
interpretation of data and relations that are then used to capture comprehensive
information from different entities [29, 39]. The essence of semantic modeling is to
represent relationships between data elements in an explicit way, which helps
maintain the consistency of semantic information. Ontology, defined as ‘‘an
explicit specification of a conceptualization, typically involving classes, their
relations and axioms for clarifying the intended semantics,’’ is perfectly suitable
for use in implementing semantic modeling in CPE [38].

On the other hand, feature technology, which is believed to be versatile enough
to support the encapsulation of tedious mechanical engineering parameters,
Attributes, and constraints, is also flexible enough to be associated with semantic
modeling entities in an abstracted and declarative form. Feature is still the main
technology in the mechanical engineering domain, but is equipped with more
capability to represent semantics, such as design intent. Hence, a hybrid semantic
modeling that bridges ontology modeling and feature modeling is believed to be a
practical way to realize interoperability between multidisciplinary systems. In the
authors’ recent the research [16], with reference to the feature models proposed by
Bidarra and Bronsvoort et al. [2, 4], a declarative feature modeling method called
semantic feature modeling was proposed. In the proposed framework, chrono-
logical order dependence is removed and the semantics of all the features are well-
defined and maintained through the product lifecycle by means of a detection and
consistency-checking mechanism. Although some modeling freedom may be
sacrificed, this is acceptable considering the improvement to semantic represen-
tation capability.

A Review of Data Representation of Product and Process Models 41

www.manaraa.com

3.3 Semantic Modeling Methods in CPE

There are two approaches to semantic modeling in CPE: integration and mapping.

3.3.1 Semantic Integration Model

The architecture of the proposed semantic integration model is shown in Fig. 5.
It consists of three layers: a data layer (DL), a semantic schema layer (SSL), and
an AL. The SSL works as a mediator to generate a semantic view for a particular
user/engineer from the original distributed, heterogeneous data embedded in
various formats. The model proposed here forms the core of the integration
framework, which will be discussed in detail in ‘‘Features and Interoperability of
Computer-Aided Engineering Systems’’.

Data Layer (DL). The data sources, such as those listed in Table 1, lie in the DL
in various formats.

Semantic Schema Layer (SSL). The central unified semantic mediator lying in
this layer includes three basic modules: (1) information extraction, which extracts
necessary information from the data sources according to local ontology;
(2) semantic mapping, which maps the information extracted into consensual and
formal specifications according to the semantic schema; (3) view generation and
management, which generates the views with only the necessary semantic infor-
mation. The knowledge library, holding the domain-specific knowledge, exists to

Fig. 5 Architecture of semantic integration model

42 N. Sajadfar et al.

http://dx.doi.org/10.1007/978-1-4471-5073-2_6
http://dx.doi.org/10.1007/978-1-4471-5073-2_6

www.manaraa.com

facilitate the mapping process as well as view generation and management.
A hybrid approach for content explication is applied here, as it is scalable and
supports heterogeneous views with reasonable implementation cost, as compared
to single- and multiple-ontology approaches [34].

Application Layer (AL). Graphical user interfaces (GUIs) for different potential
users, based on the views generated in the SSL, are provided in this layer.

3.3.2 Semantic Mapping

The information retrieved from distributed data sources can be first mapped based
on the semantic schema defined, and then mapped to any other engineering
disciplinary view as required by referencing. The partial semantic schema of
pressure vessels is given as an example in Fig. 6. To generate a requirement for a
vessel, the material as well as its temperature and flow rate will be grouped
together to form the input. Pressure, capacity, and temperature retrieved from
P&ID will be grouped into the operating conditions. Design pressure, material, and
thickness retrieved from the specification sheet supplied by the vendor will be
grouped into vessel specifications.

However, to collaborate with different systems, there are still two potential
causes of semantic inconsistency: different meanings attached to the same termi-
nology, and the same meaning represented by different terminologies [34]. For
example, as shown in Fig. 6, vessel specification has two pressures specified,
design pressure and operating pressure, but only one pressure is required in the
operating conditions. During ontology mapping, it should be therefore explicitly

-Design Pressure
-Operating Pressure
-Material
-Net Weight
-Operating Weight
-Empty Weight
-Size
-Thickness
-Pressure Rating of Nozzles

Vessel

-Material
-Flow Rate
-Temperature

Input

-Material
-Flow Rate
-Temperature

Output

-Pressure
-Capacity
-Temperature

Operating Condition

*

*

* *

*

*

Fig. 6 A semantic schema of vessels

A Review of Data Representation of Product and Process Models 43

www.manaraa.com

reflected in the shared vocabulary that the pressure in the operating conditions
should be interpreted as the operating pressure in the vessel vocabulary. In the
same example, the material in the input and the one in vessel specification sets do
not mean the same thing: one is the material of input and the latter means the
material of the vessel. Within the shared vocabulary, these two instances of the
term material have to be interpreted into different meanings automatically.

Therefore, in semantic modeling, a well-structured semantic schema, along
with the shared vocabulary that serves the function of ‘‘dictionary’’ to accurately
interpret the meaning of the information, keeps the semantics consistent among the
instances of different entity types, and provides the schema to map the data
elements accordingly.

4 New Development in Product and Process Modeling
with Engineering Informatics

Storing and extracting geometric and nongeometric feature information for
engineering design in an integrated and dynamic data repository is an important
step in managing and improving product and process engineering lifecycles.
Currently, the state of industrial practices is still based on holding engineering
design models in file storage [1] and then managing data through various data
controllers. This situation constrains the integration of applications, and imple-
menting concurrent design development processes also demands more compli-
cated data controllers. Further, the situation leads to redundancy in storing
consistent product and process information. An unfortunate fact is that a lack of
integration among CAD and CAM systems leads to a deficiency in the computer
numerical control (CNC) programming process, which seriously limits the
implementation of digital manufacturing technology. Many industries find that
they need to convert various CAD file formats into one another for different
engineering applications. Clearly, as many people have realized, an interoperable
engineering platform will help industries to effectively share their digital assets
among various computer systems and to achieve full return on their investment in
digital intellectual properties. If the projected vision can be achieved, the
centralized data repository can be managed at different levels of abstraction based
on the root-level geometric or nongeometric data.

To leverage the widely-accepted feature technology with database technology,
a unified feature-based fine-grain product repository has been suggested with the
aim of interoperability among engineering applications [37]. For instance,
Ma et al. [18] provided a fine-grain and feature-based product data repository
design. They suggested using a complete SQL database to accommodate the
complex neutral features and extracted feature information via database API
functions. However, this database has limitations, as the table of databases must be
created manually, and the database cannot perform validation of feature changes.

44 N. Sajadfar et al.

www.manaraa.com

Global research in the area of integrated feature-based systems can be divided
into two approaches: developing the architecture of an integrated feature-based
system, and implementing feature-mapping functions between systems. The
majority of the current research focuses on the latter approach and explores the
concept of reusing CAD models and converting design results from one feature
model to another. Much of the previous research also focused on the integration of
CAD and CAE processes, but was limited to operating geometric entities or
storing layer-base information in a database. The most common problem is that
CAD designs have much more complex structures than CAE geometric meshes.
Consequently, full-scale implementation of CAD and CAE integration has yet to
be attempted.

5 Engineering Change Management in Design:
The Propagation Method

Engineering change management (ECM) is an essential aspect of concurrent
engineering, and comprises all related activities during the design and manufac-
turing stages. To reduce product development time, many companies adopt the
concurrent engineering approach by stressing a parallel and collaborative engi-
neering procedure. ECM is typically time-consuming, as it frequently involves
disparate information systems issued frequently during the product lifecycle. Due
to its complexity, building a system that enables seamless design change propa-
gation is likely to be a very demanding task. This section introduces a preliminary
propagation-based methodology for design change management in collaborative
design and manufacturing.

5.1 The Design Change Process Framework

Design changes (DCs) are known as engineering changes (ECs), which is an
important phase in the computer-integrated manufacturing system [19]. Reducing
the time for ECs can greatly shorten the product lifecycle and improve the pro-
ductivity of an enterprise. Figure 7 shows a framework for the process of DC.

Due to the application of modular technology, companies can choose a par-
ticular supplier who is focused on a series of components, and build a collaborative
unit in order to maximize the benefit margin and shorten the product lifecycle. In
this collaborative product development process?, speeding up EC requires that EC
information should be represented precisely and clearly in a standard format and
be shared among participating companies. However, part suppliers do not always
use the same CAD system and are often unwilling to share their CAD data with
other cooperating companies, in order to honor policies of protecting corporate
intellectual property. These circumstances make it difficult for collaborating

A Review of Data Representation of Product and Process Models 45

www.manaraa.com

companies to conduct efficient EC, since a part supplier who is responsible for one
part of a product needs other CAD part model data designed by other companies
for the ECs in the typical CAD product assembly modeling process. While much
research still needs to be done to address this issue, there are a few methods that
have been both published and practiced in the industry domain in recent years.

5.2 Recent Research and Implementation of ECM

ECM (especially design change management) occupies an irreplaceable position
throughout the product lifecycle. Much effort has been put toward using a prop-
agation-based approach. With the development of product data management
(PDM) systems, conceptual design change management based on product structure
has been studied by Peng and Trappey [26] and Do and Choi [7, 8]. Upon
improvement in the parametric modeling capabilities of commercial CAD
systems, a parameter-based approach was suggested for ECM [41]. Recently,
common platform specifications and implementation guidelines have been
developed by standardization research organizations, such as ProSTEP, toward the
development of an ECM system [27, 30]. Two methods in particular, an engi-
neering change propagation (ECP) system based on the STEP neutral data format
and a neutral reference model based on parameter referencing, are discussed below
for representation and propagation of ECs in collaborative product development.

5.2.1 Engineering Change Propagation with STEP Data Structures

You and Yeh [44] proposed an ECP system based on STEP. This system for
modeling ECs in models of engineering data, geometry, and features using the
STEP standard provides a flexible, virtually integrated framework to enable EC.
Figure 8 shows the basic conceptual structure of the approach.

Figure 8 illustrates the overall structure of the ECP system. The ECP, CAD,
and PDM system databases are organized as a three-tier architecture of individual

Fig. 7 Framework for the process of design change

46 N. Sajadfar et al.

www.manaraa.com

databases, which stores the original data. The open database connectivity (ODBC)
protocol and the record sets class of Microsoft foundation classes (MFCs) are
applied to the database operation modules of these systems. Two additional
modules, CADDBManager and PDMDBManager, are used to handle the EC
transactions when a change is issued. When a DC is issued in the CAD system,
the CADDBManager searches and triggers the ECPDBManager, which manages
the database of the ECP system. ECPDBManager obtains the ECP network of the
affected data section and gains all the changed items in the CAD and PDM
systems. The ECP system then propagates the change from CAD to PDM. The
CAD feature editing functions and PDM system commands are applied via
implemented COM technology to assist interoperation. Functions defined by these
systems are made available to the public and compiled as COM automation
documents. The client can request, through a public interface, access to the
functions defined in the server. The automation server inherits IUnkown and
IDispatch interfaces in the MFC class and provides clients with public methods to
call automation objects. The operation of the ECP network in the study [44] relies
on the COM-based change propagation mechanism in the ECP system. The ECP
triggering module, CAD feature editing, and the PDM system are all COM object
servers that can call and be called by other COM automation objects.

A DC may be propagated through the related features, if they are affected.
Collaborative product design can be classified into two categories: collaborative
component design and collaborative assembly design [33, 43]. Changes in the
design of a part often involve the shape modification of other parts in the assembly
model, especially in places where there is a tight connection between parts. When
the feature of a part is changed, the tight connection feature with this part should
thus also be changed. The process shown in Fig. 9 facilitates the propagation of
changing information throughout the whole model.

Fig. 8 The ECP system architecture [44]

A Review of Data Representation of Product and Process Models 47

www.manaraa.com

Searching the propagated parts and establishing the items impacted by the DC
is the critical algorithm of the propagation process. Therefore, the related parts
must satisfy the following conditions:

1. A relational part must have the characteristics of features.
2. It has to be one of the mating couples with the parts feature that has the DC

data.
3. The mating condition has to be a tight connection.

After the above conditions are satisfied, when a related feature is changed, the
corresponding features should also change shape in order to keep the same mating
conditions of the assembly relationship. In order to accelerate the process, before
propagation is begun, it is better to initialize the information in the assembly
model for higher efficiency and shorter search time.

5.2.2 Engineering Change Propagation with a Feature Reference
Model

Hwang and Mun [9] proposed a neutral reference model for the representation and
propagation of EC information in collaborative product development. This neutral
reference model consists of a neutral skeleton model and an external reference
model, which is implemented on the parametric referencing functions supported

Fig. 9 The propagation
process [43]

48 N. Sajadfar et al.

www.manaraa.com

by most available CAD systems. If the referenced geometric entity is changed, the
consequent parameter value changes are automatically propagated to the refer-
encing geometry entities, which trigger an automatic change of the referencing
model. Employing this mechanism, an external referencing model was used by
Hwang and Mun [9] with the aim of managing the relations between the original
skeleton and the NSM CAD files. Do and Choi [7] also proposed a comprehensive
procedure for ECP in order to maintain consistency between various product data
views. Their procedure used the history of product structure changes based on an
integrated product data model. The effectiveness of these methods is, however,
still to be proved.

Clearly, much research has yet to be done to set up an integrated product
information database with a common standard for ECM that is accessible and
useful for supporting the entire product lifecycle.

6 Summary

This chapter provided a review of the state of the art in product and process
informatics modeling and implementation. It is clear that currently there are
numerous computer solutions that are addressing engineering application support
requirements piece by piece. However, there are many gaps among these piece-
meal solutions in communicating associated information effectively. Such inte-
gration and data sharing difficulties have been the main hurdles in realizing the
potential economic benefits of engineering informatics. A systematic study of
interoperability among computer systems is in high demand, which happens also
to justify the purpose of this book, i.e., exploring a theoretical framework for
interdisciplinary and multifaceted informatics engineering. To do so, the authors
believe extended feature technology will play a pivotal role in future technology
development.

References

1. Anderson RA, Ingram DS, Zanier AM (1973) Determining fracture pressure gradients from
well logs. J Pet Technol 25:1259–1268

2. Bidarra R, Bronsvoort WF (2000) Semantic feature modeling. Comput Aided Des
32:201–225

3. Bohm MR, Stone RB, Simpson TW, Steva ED (2008) Introduction of a data schema to
support a design repository. Comput Aided Des 40:801–811

4. Bronsvoort WF, Bidarra R, van der Meiden HA et al (2010) The increasing role of semantics
in object modeling. Comput Aided Des Appl 7:431–440

5. Chen YM, Wei CL (1997) Computer-aided feature-based design for net shape manufacturing.
Comput Integr Manuf Syst 10:147–164

6. Dey D (2003) Record matching in data warehouses: a decision model for data consolidation.
Oper Res 51:240–254

A Review of Data Representation of Product and Process Models 49

www.manaraa.com

7. Do N, Choi IJ (2008) Propagation of engineering changes to multiple product data views
using history of product structure changes. Int J Comput Integr Manuf 21:19–32

8. Do N, Choi IJ, Jang MK (2002) A structure-oriented product data representation of
engineering changes for supporting integrity constraints. Int J Adv Manuf Technol
20:564–570

9. Hwang J, Mun D (2009) Representation and propagation of engineering change information
in collaborative product development using a neutral reference model. Concurrent Eng
17:147

10. Kapuscinski R, Zhang RQ, Carbonneau P, Moore R, Reeves B (2004) Inventory decisions in
Dell’s supply chain. Interfaces 34:191–205

11. Kim W, Seo J (1991) Classifying schematic and data heterogeneity in multidatabase systems.
IEEE Comput 24:2–18

12. Körtgen A, Nagl M (2011) Tools for consistency management between design products.
Comput Chem Eng 35:724–735

13. Kovacs G, Kopacsi S, Haidegger G, Michelini R (2006) Ambient intelligence in product
lifecycle management. Eng Appl Artif Intell 19:953–965

14. Liang J, Shah JJ, D’Souza R et al (1999) Synthesis of consolidated data schema for
engineering analysis from multiple STEP application protocols. Comput Aided Des
31:429–447

15. Ludwig EE (1964) Applied process design for chemical and petrochemical plants, vol 1. Gulf
Publishing Company, Houston

16. Ma YS (2009) Towards semantic interoperability of collaborative engineering in oil
production industry. Concurrent Eng 17:111–119

17. Ma YS, Tong T (2003) Associative feature modeling for concurrent engineering integration.
Comput in Ind 51:51–71

18. Ma YS, Tang SH, Au CK, Chen JY (2009) Collaborative feature-based design via operations
with a fine-grain product database. Comput in Ind 60:381–391

19. Marri HB, Gunasekaran A, Grieve RJ (1998) An investigation into the implementation of
computer integrated manufacturing in small and medium enterprises. Int J Adv Manuf
Technol 14:935–942

20. Marsh GL, Smith JR (1984) Exploratory well design for 5,000- to 7,500-Ft water depths U.S.
East Coast. Offshore Technology Conference, Houston. ISBN 978-1-61399-077-3

21. Morbach J, Yang A, Marquardt W (2007) OntoCAPE: a large-scale ontology for chemical
process engineering. Eng Appl Artif Intell 20:147–161

22. Murphy RM (2007) Introduction to chemical process: principles, analysis, synthesis.
McGraw-Hill, New York

23. Olsen GR, Cutkosky M, Tenenbaum JM, Gruber TR (1995) Collaborative engineering based
on knowledge sharing agreements. Concurrent Eng 3:145–159

24. Palmonari M, Viscusi G, Batini C (2008) A semantic repository approach to improve the
government to business relationship. Data Knowl Eng 65:485–511

25. Patent Application Publication (2007) United States, Pub No: US2007/0022081 A1, Pub Date
25 Jan 2007

26. Peng TK, Trappey A (1998) A step toward STEP compatible engineering data management:
the data models of product structure and engineering changes. Robot Comput Integr manuf
14:89–109

27. ProSTEP iViP ECM Implementor Forum (2012). http://www.prostep.org/fileadmin/freie_
downloads/Empfehlungen-Standards/ProSTEP_iViP/ProSTEP-iViP_Recommendation_
Engineering-Change-Management_Engineering-Change-Order_3-2_0.9.pdf. Accessed 23
Aug 2012

28. Rachuri S, Subrahmanian E, Bouras A, Fenves SJ, Foufou S, Sriram RD (2008) Information
sharing and exchange in the context of product lifecycle management: role of standards.
Comput Aided Des 40:789–800

29. Rishe N (1992) Database design: semantic modeling approach. McGraw-Hill, New York
30. SASIG ECM group (2006). http://www.sasig.com/site. Accessed 23 August 2012

50 N. Sajadfar et al.

http://www.prostep.org/fileadmin/freie_downloads/Empfehlungen-Standards/ProSTEP_iViP/ProSTEP-iViP_Recommendation_Engineering-Change-Management_Engineering-Change-Order_3-2_0.9.pdf
http://www.prostep.org/fileadmin/freie_downloads/Empfehlungen-Standards/ProSTEP_iViP/ProSTEP-iViP_Recommendation_Engineering-Change-Management_Engineering-Change-Order_3-2_0.9.pdf
http://www.prostep.org/fileadmin/freie_downloads/Empfehlungen-Standards/ProSTEP_iViP/ProSTEP-iViP_Recommendation_Engineering-Change-Management_Engineering-Change-Order_3-2_0.9.pdf
http://www.sasig.com/site

www.manaraa.com

31. Sen A, Jacob VS (1998) Industrial-strength data warehousing. Commun ACM 41:28–31
32. Shah JJ, Mantyla M (1995) Parametric and feature-based CAD/CAM concepts, techniques

and applications. Wiley-Interscience, New York
33. Shyamsundar N, Gadh R (2002) Collaborative virtual prototyping of product assemblies over

the internet. Comput Aided Des 34:755–768
34. Stuckenschmidt H, Harmelen FV (2005) Information sharing on the semantic web. Springer,

New York
35. Tang SH (2007) The investigation for a feature-oriented product database. PhD thesis, School

of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
36. Thomas CE (2007) Process technology equipment and systems, 2nd edn. Cengage Learning,

Delmar
37. Uddin MM, Ma YS (2011) Towards a feature-based and fine-grain product repository for

heterogeneous computer-aided systems. In: 4th international conference on changeable, agile,
reconfigurable and virtual production (CARV2011), Montreal, Canada

38. Uschold M, Gruninger M (1996) Ontologies: principles, methods and applications. Knowl
Eng Rev 11:93–155

39. Wang H, Xiang D, Duan G et al (2007) Assembly planning based on semantic modeling
approach. Comput Ind, pp 227–239

40. Wiesner A, Morbach J, Marquardt W (2011) Information integration in chemical process
engineering based on semantic technologies. Comput Chem Eng 35:692–708

41. Yang J, Goltz M, Han S (2004) Parameter-based engineering changes for a distributed
engineering environment. Concurrent Eng: Res Appl 12:275–286

42. Yang WZ, Xie SQ, Ai QS, Zhou ZD (2008) Recent development on product modelling: a
review. Int J Prod Res 46:6055–6085

43. You CF, Tsou PJ (2007) Collaborative design for an assembly via the internet. Adv Manuf
Technol 31:1217–1222

44. You CF, Yeh SC (2002) Engineering change propagation system using STEP. Concurrent
Eng 10:349

45. Zamite J, Silva F, Couto F, Silva MJ (2010) MEDCollector: multisource epidemic data
collector. In: Proceedings of the 1st International Conference on Information Technology in
Bio- and Medical Informatics

A Review of Data Representation of Product and Process Models 51

www.manaraa.com

An Example of Feature Modeling
Application: Smart Design for
Well-Drilling Systems

Rajiur S. M. Rahman and Y.-S. Ma

Abstract The reported effort is intended to develop a semi-automated,
knowledge-based, and integrated petroleum well-drilling engineering design
system, considering various aspects such as drill-string [40] and casing design
models. The goal was to significantly increase the dynamic drilling engineering
responsiveness to real field changes through the automation of conceptual design
and 3D modeling processes. Built-in rules and knowledge are used to develop the
conceptual design; the system then automatically generates the assembly config-
uration and retrieves part specifications from a data sheet to generate the CAD
parameter files. These parameter files are used to further generate the full CAD
model. The conceptual design and CAD models are integrated in such a way that
any changes in the design can be reflected automatically throughout the system.
Hopefully, this chapter serves not only as an example application for feature-based
design, but also as a research reference for the energy industry to leverage modern
informatics advancement for its efficiency and cost effectiveness.

1 Introduction

Traditional feature technology has been reviewed thoroughly in previous two
chapters, i.e. ‘‘Introduction to Engineering Informatics’’ and ‘‘A Review of Data
Representation of Product and Process Models’’. The effective use of feature
technology varies considerably from industry to industry. This is due to both the
nature of an industry’s engineering process and the extent of new technology

R. S. M. Rahman � Y.-S. Ma (&)
Department of Mechanical Engineering, University of Alberta,
Alberta, Canada
e-mail: yongsheng.ma@ualberta.ca

R. S. M. Rahman
e-mail: rrahman@mccoyglobal.com

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_3, � Springer-Verlag London 2013

53

http://dx.doi.org/10.1007/978-1-4471-5073-2_1
http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_2

www.manaraa.com

penetration into industrial practice. Kasravi [21] has pointed out that human
expertise and knowledge are scarce, and that the need for knowledge embodiment
within the geometric model is obvious. However, most 3D CAD software offer
only simple geometric modeling functions and fail to provide users with sufficient
design knowledge. Design knowledge embedded in a computer system is of great
help in most engineering tasks. Therefore, the design of automatic and knowledge-
based systems has been an active research topic for quite some time [25]. Zha et al.
[48] have developed a knowledge-based expert design system for assembly-
oriented design. Koo et al. [22] have constructed an expert paper-feeding mech-
anism design system, where the physical part of the paper-feeding mechanisms are
represented as objects, and the design knowledge and constraints are represented
by rules and object methods. The researchers did not extend the program to CAD
application, however. Myung et al. [37] have proposed a design expert system to
redesign assemblies of machine tools in a CAD environment. Roh and Lee [43]
have created a hull structural modeling system for ship design, which was
developed using C++ and was built on top of 3D CAD software.

Transferring knowledge-based engineering (KBE) intelligence to a CAD
system presents a challenge because there is no readily available mechanism to
enable such information flow, as identified by Ma et al. [27]. As introduced by
Kasravi [21] preliminarily, parametric engineering uses the design requirements as
the input data, and the parameters of the key features of the constituent compo-
nents as the output. More recently, numerous industrial applications have been
developed with feature technology; for example, Chu et al. [11] have constructed a
parametric design system for 3D tire mold production. Lee et al. [24] have
developed a parametric tool design system for cold forging using Autolisp.
Researchers have commonly used parametric part templates to generate new 3D
designs; changes are realized by setting values to the driving parameters [46]. Ma
et al. [26] have considered the topological and configuration changes of parts.

Feature technology has been a cornerstone of engineering informatics since the
1990s. The abundant literature on feature technology shows its versatility in
capturing, modeling, and deploying the best engineering practices in a number of
industries. This chapter showcases an example of a typical feature technology
application in a less common CAD application area: well-drilling system design
for the oil and gas industry.

The research effort at the University of Alberta is intended to develop a
semi-automated, knowledge-based, and integrated petroleum well-drilling engi-
neering design system, considering various aspects such as drill-string [40] and
casing design models. This proposed comprehensive and intelligent drilling design
package is named ‘‘DrillSoft.’’ The goal is to significantly increase the dynamic
drilling engineering responsiveness to real field changes through the automation of
conceptual design and 3D modeling processes. Built-in rules and knowledge are
used to develop the conceptual design; the system then automatically generates the
assembly configuration and retrieves part specifications from a data sheet to generate
the CAD parameter files. These parameter files are used to further generate the full
CAD model. The conceptual design and CAD models are integrated in such a way

54 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

that any changes in the design can be reflected automatically throughout the system.
Such intelligent CAD design practice is new in the drilling industry.

It is the authors’ intention that this chapter serves not only as an example for
feature-based engineering design, but also as a research reference for the energy
industry to leverage modern informatics advancement for its efficiency and cost-
effectiveness.

Naturally, intelligent computer tools supporting petroleum well-drilling design
have attracted a lot of attention. As pointed out by Mattiello et al. [32], an accurate
well and casing design can significantly reduce drilling costs and risks. A com-
puter-aided support system for casing design and shoe depth selection has been
reported [33] and was intended to improve the reliability of solutions, reduce total
project time, and help reduce costs. However, their well casing design is still
manual. Casing design is rigorous, time-consuming, and obsolescent; it is also
error-prone due to the difference in the analytical computation of stresses and their
graphical representation against depth [1]. The authors strongly believe that
modern CAD technology can play a significant role in enhancing the consistency
and efficiency of well-drilling design.

As evidenced by this body of research, the petroleum industry has been using
knowledge bases and expert systems for decades; Hayes-Roth identified as early as
1987 that expert systems would play a dramatic role in the success of the out-
standing performers in the petroleum industry [18]. Mabile et al. [28] developed an
expert system that helps in formation recognition. Martinez et al. [31] constructed
a directional drilling expert system for the use of advisory tools, which recom-
mended changes in the bottom hole assembly (BHA). Kulakofsky et al. [23]
proposed an expert slurry-design system (ESDS) in order to guide users in the
selection process of cement slurry. Chiu et al. [9] implemented an expert system
that can be used efficiently as a tool to advise engineers of the proper base fluids
and additives to be selected for a given set of well conditions. Fear et al. [16]
created an expert system for drill bit selection; their system uses a knowledge base
of bit selection rules to produce a generic description of the most suitable bit for a
particular set of drilling and geologic conditions. Their approach has several
limitations; for example, the bit selection cannot demonstrate best use of past
experience and relies too heavily on data that is conveniently available rather than
the best fit for the purpose. Several case-based systems have also been reported
[35, 36, 45]. Mendes et al. [35] developed a petroleum well design system capable
of reusing previous designs which included considerations for potential failure in
new designs. Shokouhi et al. [45] integrated real-time data with past experience to
reduce operational problems. Al-Yami et al. [2] developed a software tool to guide
drilling engineers in formulating effective cement slurries for entire well sections.

This work studies well-drilling planning and design applications with an
automatic and generative approach. The first step in well-drilling is to plan the
well. Current well-planning practice is usually done section by section with limited
help from computer-based tools. Well-drilling planning has to follow a systematic
approach. It involves several stages, as shown in Fig. 1. The planning tasks at
different stages depend on one or more other stages; for example, casing selection

An Example of Feature Modeling Application 55

www.manaraa.com

requires input of casing setting depth and casing size. Therefore, the planning
stages are commonly developed concurrently and interactively by a team of
experts. A great deal of specialized knowledge is required to achieve a safe and
economical design. Although many drilling software tools are available on the
market to assist the planning team, most of them are standalone and support only
one or two stages of the planning process.

One critical application of expert systems in the drilling industry is the design
of casing strings, as identified by Heinze [19], who constructed an expert system to
design the casing and hydraulic system of a drilling well. Jellison et al. [20]
proposed a rule-based expert system for casing design, but casing setting depth
was not included in their model. Wajtanowicz and Maidla [47] proposed an
optimization program for minimum-cost casing design. This method was,
however, unable to handle complex load conditions. Roque et al. [44] have
developed an optimized methodology and an algorithm to minimize the cost of
combined casing design for complex loading conditions. Unfortunately, the
researchers separated the load calculation from the optimization model, and as a
result sacrificed the efficiency of the overall design process. In addition, their
system required many hours to complete a single string design. A solution to this
problem was attempted by Halal et al. [17], who proposed a minimum-cost casing
design technique that employed a recursive branch-and-bound search method
together with a streamlined load generator for complex loading conditions. Their
technique designed the casing string quickly, but their system did not include
casing setting depth. Rabia [39] pointed out that not every company has unlimited
access to all grades and types of available casings; he argued that cost calculations
come into play after the grades and weights are selected. Akpan [1] created a
computer program for selecting casing design using a graphical method, but his
program does not automatically select the casing; instead, each casing has to be
chosen by the user and fed to the system manually for evaluation.

As can be seen in the literature, to date most of the existing drilling software
tools are standalone. Those reviewed computer systems suffer from a common
shortcoming, i.e. the software packages require a tedious setup process to run for

Fig. 1 Well-drilling
planning stages [36]

56 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

each analysis or generation cycle, and the solution development process is geared
toward experienced users, hence the limited popularity of such applications. From
the author’s point of view, the knowledge modules implemented in such packages
are not adaptive enough to new input from real situations in the field. The need for
a comprehensive casing design program still exists. A properly developed well-
drilling program can improve design cycle time and reliability while reducing the
total cost.

With the advancement of information technologies, an integrated and compre-
hensive well-drilling engineering system is now feasible, because data sharing and
constraint management can be carried out in a coherent manner with sophisticated
new methodologies [26, 27]. As will be described below, an integrated computer
software package, ‘‘DrillSoft,’’ has been designed at the University of Alberta to
meet this objective. The package currently consists of three modules: casing design,
drill-string design, and operational parameter optimization.

By using a feature-based approach, the system under research is also integrated
with CAD software to parametrically model the 3D well structure and drill-string.
To the best of the author’s knowledge, there is no such software solution that
integrates well planning with 3D CAD modeling. The overall objective of this
project is the integration of well-drilling planning with automatic model generation.

2 Research Approach

Knowledge-based engineering is commonly applied in capturing and structuring
reusable engineering cases to create and enhance solutions for a product during its
entire life cycle [11]. Knowledge bases can exist in many forms, such as
spreadsheets, handbooks, engineering formulas, drawings, and documents. The
current research at the University of Alberta is aimed toward developing a generic
and parametric drilling system driven by knowledge-based rules and constraints,
which can be reused repeatedly. At the current stage of the research, this system
can now produce the conceptual design and further generate the parametric 3D
models of the well casings and the drill-string. Unlike the efforts using CAD
templates, which require part libraries and are difficult to manage, this research
uses a generative approach to program generic drill-string models. There are many
advantages of using a generative approach instead of template files, including:
geometry and features can be easily created and edited, parameters can be created
and manipulated in a more controlled manner, geometry analysis and part stan-
dardization can be easily achieved, files can be managed more efficiently, and
finally, data access and family parts creation are more convenient.

To develop the target knowledge-driven system for well-drilling system design,
feature technology has been employed, and the software has been prototyped.
It considers the geological input, such as pore pressure or overburden, to generate a
step-by-step interactive drilling plan. The implemented well-planning stages
include the casing setting depth, casing and hole size determination, casing

An Example of Feature Modeling Application 57

www.manaraa.com

selection, and finally drill-string design and modeling. The system is integrated with
a feature-based CAD system for generating 3D parametric models. An operational
parameter module is developed in the system to predict the drilling coefficients and
to minimize the drilling cost per foot by using offset well data, determining the
optimum WOB, and optimizing the drill-string rotation speed for a single bit run.
Based on this approach, an integrated well-planning system can be fully developed
and will be very useful for the decision making of drilling companies.

3 Well-Drilling System Design Principles and Processes

Well-drilling planning is a systematic and team-based process. Achieving a safe
and economical design requires a great deal of specialized knowledge. Although
drilling software is widely available on the market to assist planning teams, data
integration and information exchange still cause serious inefficiencies in response
to application conditions and low-quality output models.

3.1 Well Casing Design

A casing is a collection of steel tubes that becomes a permanent part of an oil or
gas well. A well consists of several sections of holes of different diameters, and a
string of casing is run after each section of hole has been drilled. Casing serves
many important functions during the life of a well. The major functions of the
casing are as follows [8, 32]:

• Maintaining the structural integrity of the bore hole;
• Serving as a high-strength flow conduit to surface for both drilling and pro-

duction fluids;
• Providing support for wellhead equipment and blowout preventers;
• Preventing contamination of nearby fresh water zones;
• Facilitating the running of wireline equipment up and down for testing;
• Allowing isolated communication with selectively perforated formation(s) of

interest.

At nearly 20 % of overall well cost, casing design engineering for well-drilling
represents a significant amount of well expenditure [44]. A small reduction in cost
will therefore result in huge savings. But just as importantly, the casing design
solution should satisfy all the constraint and loading requirements. The casing
design module starts with casing setting depth determination, which is the most
critical step in casing design. Many parameters must be considered, including pore
pressure, fracture pressure, geophysical conditions in the area, bore hole stability
problems, corrosive zones, environmental considerations, regulations, and
company policies.

58 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

Among the input parameters, pore pressure and fracture pressure are the most
widely used to determine the setting depth. The rocks inside the earth contain pore
spaces, which are filled with fluids in the form of either gas or liquids. These
trapped fluids cause the rock wall to experience a pressure known as formation
pore pressure.

There are two different methods used to determine the formation pore pressure:
the geophysical method and the logging method. The geophysical method helps to
predict the formation pore pressure before the well is drilled, while the logging
method is applicable after the well has been drilled. In this study, pore pressure is
considered to be an input, while fracture pressure is the pressure at which a
formation matrix opens to admit hole liquid through an actual crack in the matrix
of the rock, as opposed to invasion through the natural porosity of the rock [8].

Two methods are used to determine the fracture pressure: direct and indirect.
There is only one direct method: fracture pressure required to fracture the rock or
to propagate the resulting fracture can be determined directly by stress analysis so
as to predict the fracture gradient. On the other hand, there are three different
indirect methods: Hubber and Willis’s method [30], Matthews and Kelly’s [4], and
Eaton’s [14]. As a modified version of the Hubber and Willis method, the Eaton
method has gained wide acceptance. Eaton suggested that Poisson’s ratio for a
given field should be fairly constant and can be determined from the data obtained
from the nearby well. In this prototyped software tool, Poisson’s ratio is consid-
ered to be a user input, and the Eaton method is used to determine the fracture
gradient of the prospective well.

FG ¼ m=1 � mð Þ rv � Pf

� ��
D þ Pf

�
D ð1Þ

here,
FG Fracture gradient;
D Depth, ft;
t Poisson’s ratio;
rv Over-burden, psi/ft; and
Pf Formation pore pressure, psi/ft.

In the process of determining the well casing settings, two more safety factors
related to downhole pressures have to be considered: trip margin and kick margin.
They are considered during mud density determination according to the following
two rules: the mud density should be slightly higher than the formation pressure
(trip margin); and the mud density should be lower than the fracture pressure (kick
margin).

Trip margin allows the mud density to be slightly higher than the formation
pore pressure and eliminates the negative surge effect. A negative surge pressure is
produced during tripping of the pipe. When making a trip the pipe is pulled
upward, and due to this pulling action a negative pressure is created inside the
hole; this results in a reduction of hydrostatic pressure. This phenomenon is known
as the negative surge effect. Conversely, in order to eliminate the positive surge

An Example of Feature Modeling Application 59

www.manaraa.com

effect, another safety factor, the kick margin, is considered. When the drill-string is
put back into the hole, a positive surge pressure is produced. If the pressure is more
than the fracture pressure of the well, the stability of the well will be compromised.

After calculating the casing setting depth, the second step of the casing design
cycle is casing size determination. Usually a well consists of several sections; it is
an important task to determine the bore hole and casing size in each section. The
following rules should be considered during casing size determination [8]:

• The bore hole must be large enough for the casing to pass freely with little
chance of getting stuck;

• There should be enough clearance around the casing to allow for a good cement
job; and

• The hole should be minimized because the bigger the bore hole, the more costly
it is to drill.

The third step of the casing design cycle is casing selection. Devereux [12]
identified two important aspects of casing selection: the casing strength to resist
the forces that are imposed on it during drilling and its reliability throughout the
life of the well without requiring a workover. Three basic loads are considered:
collapse load, burst load, and axial load. Collapse load can be defined as differ-
ential pressure load between the external and internal pressures when the external
pressure exceeds the internal pressure and causes the casing to collapse. During the
design process, worst-case scenarios are considered. When the collapse load is
calculated, for example, the minimum internal pressure and the maximum external
pressure are both considered. A safety margin is also included. Burst load is
defined by the difference between the internal and external pressure when the
internal pressure exceeds the external pressure and causes the casing to rupture or
burst. Axial load is the cumulative tension or compression load caused by gravi-
tational and frictional forces on the pipe. As mentioned earlier, a well has several
sections and casing design is required for each of them.

During casing selection, the engineer first calculates collapse and burst loads
and sets their values as constraints. Depending on the type of casing section, the
engineer selects the appropriate rules from the rule base for load calculation. For
example, the collapse load calculation for surface and intermediate casings are not
the same, so different procedures have to be followed. Next, the engineer checks
whether the available casings are capable of meeting the total depth. If not, the
engineer asks for more casings. The engineer then determines the allowable length
for each available casing based on collapse and burst ratings. Once the casing
selection has been made, the next step is to check whether the selected casing is
capable of sustaining the axial load. After the conceptual design of the casing is
completed, a formal report has to be developed.

60 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

3.2 Drill-String Design

Oil well drill-string design is another major task in drilling engineering that
requires geological information input and, informed by knowledge and experience,
is carried out upfront. A drill-string is a collection of drill pipes, drill collars,
heavyweight drill pipe, crossover sub, and bit sub that transmits drilling fluid and
rotational power to the drill bit. Drilling pipes connected by drilling collars and
crossover subs form hollow shafts through which drilling fluid can be pumped
down, and the fluid and cutting (such as the produced drilling mud with rock chips)
can be brought back to the surface through the annulus.

According to Chuna [10], drill-string design is the most important part of
operations in drilling engineering. It is the responsibility of the drilling engineer to
design a system suitable for varying field conditions. The success of a drilling job
is very much dependent on the design of the drill-string. In order to reduce the risk
of drill-string failure, the design should be justified beforehand by simulation or
finite element analysis. Austin [5] has argued that a 3D model can provide closer
links between geoscientists and reservoir engineers, while promoting the inte-
gration as well as the interaction of the two. Although it has long been clear that
3D well-design models, especially the drill-string model, will be quite useful in
simulation and finite element analysis (FEA) [34] to predict the behavior of the
well, it is cumbersome to develop repetitive 3D models for each section of the well
in order to perform such analyses. At present, analytical models, or rough FEA for
the whole drill-string, are used to compute torque and drag.

3.3 Drilling Optimization via Operational Parameters

The design of a well program must satisfy all the technical considerations.
Considering only the normal design aspect of drilling tools may not result in the
most economical design; operational parameters must also be considered. Drilling
optimization can be carried out by selecting the best combination of drilling
parameters. Drilling parameters are divided into two groups: alterable and unal-
terable. Alterable drilling parameters, or variables, are related to mud, hydraulics,
bit type, WOB, and rotary speed. Unalterable parameters, or conditional param-
eters, are weather, location, depth, rig condition, and so on. A comprehensive
drilling optimization program has been one of the most important research areas in
drilling engineering since the 1960s.

Several researchers have developed algorithms, models, and programs to
optimize drilling performance by maximizing the rate of penetration (ROP) and
minimizing the cost per foot. Bourgoyne et al. [7] constructed a comprehensive
drilling model to calculate formation pore pressure, optimum weight of bit (WOB),
rotary speed, and jet bit hydraulics, and also provided a multiple regression
approach to determine the drilling coefficients in order to calibrate the drilling

An Example of Feature Modeling Application 61

www.manaraa.com

model with different field conditions. Maidla et al. [29] used a computer program
to select drill bit, WOB, and rotary speed. Bjornsson et al. [6] proposed a rule-
based bit selection expert system by employing the mechanical specific energy
(MSE) concept. Their system aimed to increase the ROP and bit life and signifi-
cantly reduce drilling time. Dupriest and Koederitz [13] effectively used the MSE
concept in evaluating the drilling efficiency of bits in real time. Rashidi et al. [42]
used both MSE and inverted ROP models to develop a method for evaluating real-
time bit wear; the method can be useful in assisting the field engineer in deciding
when to pull the bit. Eren et al. [15] constructed a real-time optimization model for
drilling parameters.

4 Proposed Software System Structure

This section investigates an integrated and comprehensive system for well design:
the computer program DrillSoft. The program is intended and prototyped to address
the difficulty of manual management of a complete drilling plan. Figure 2 shows
DrillSoft’s various modules. The program consists of two functional modules:
casing design and drill-string design. Another parameter determination module, the
drilling coefficient calculator, is designed to work out those commonly used engi-
neering coefficients related to real application conditions. This module serves as a
central engineering data sharing block among various functional modules.

For implementing engineering rules and calculations, the Microsoft Visual
Basic application in Excel was used. Siemens NX6 was used for CAD modeling
with its ‘‘Open C’’ application programming interfaces (APIs). The concept is to
make full use of the capability of CAD API functions that can be called within an
object-oriented system environment to generate standard component and assembly
models. The CAD API functions can also integrate CAD functions with Excel
application programs. Figure 3 shows the main user interface.

4.1 Casing Design Module

As shown in Fig. 3, DrillSoft first takes input from the user. The following inputs
are required: type of well, unit system, pore pressures at various depths, kick
margin, and trip margin. Pore pressure and fracture pressure are the main deter-
minants for casing setting depth and size calculation, as shown in Fig. 4.

The design software tool contains a rule base to calculate collapse, burst, and
axial load. Every company has its own set of standards to calculate these loads
during casing design, using flexible software that can be adapted according to
need. This flexibility can be achieved by adding new rules to the Excel model used
in this work. A casing selection process flowchart is shown in Fig. 5.

62 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

Depending on the type of casing section, the software selects the appropriate
rules from the rule base for load calculation. The system identifies which rules are
to be applied by considering the type of section. After determining the collapse and
burst rating, DrillSoft checks whether the available casings are capable of meeting
the total depth. If the available casings do not meet whole depth, then the software
module asks to provide more casings. Once it finds that the total depth is
achievable with these casings, the program then determines the allowable length
for each available casing based on collapse and burst rating. The allowable length
is used as break points for the algorithm.

The potential candidates are those types of casings that can be used safely in the
concerned depth interval. It is assumed that the available casing input is provided
sequentially, moving from those with the lowest cost to highest costs. DrillSoft
selects the lowest-cost casing type (and thus the most economical) from the
potential candidates and adds a length equal to the minimum casing section. The
minimum casing section is a key factor in this algorithm, as it limits the number of
different types of casing used in a combined casing string. Byrom [8] suggests that
this minimum casing section length should not be less than 500 ft. The system
selects the first casing type and adds a length equal to the minimum casing section
length. The next step is to check whether the casing string achieves the total depth.
If the total depth has not yet been achieved, the program chooses again the lowest-
cost casing type from the available candidates. If the candidate selected in that
stage is similar to the previous casing type, the system works out the remaining

Fig. 2 DrillSoft modules

An Example of Feature Modeling Application 63

www.manaraa.com

depth range by using the next break point minus casing covered, and chooses the
smaller value between the minimum casing section and the remaining range.

Next, DrillSoft takes the resulting depth value and adds it to the casing length.
Then it checks again whether the casing string can support the total depth. If it
does not achieve the total depth, the casing selection process continues until the
whole depth has been achieved.

After the casing selection, the axial load is checked. A rule base is used to
calculate the axial load of each section of casing. If any portion of the casing string
fails to satisfy the axial load condition, the casing selection starts again from the
beginning. If the axial load with the designed casing is satisfactory, the conceptual
design of the casing is complete. This conceptual design will be stored in a data sheet

Fig. 3 DrillSoft’s main user interface

64 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

and can be further used by other modules. At the end of casing design, a formal
report is generated. This process can be repeated for other sections of the hole.

4.2 Drill-String Design Module

The success of a drilling job is very much dependent on the design of the drill-
string. It is a well-known fact that drill-string failure represents one of the major
causes of ‘‘fishing’’ operations that likely lead to millions of dollars in loss for the
industry. It is therefore crucial to validate the design beforehand by doing FEA or
simulation. In addition, a 3D drill-string model will be very helpful in carrying out
such analyses.

The DrillSoft program is connected to a CAD system. A knowledge-driven
CAD modeling approach has been followed. To eliminate repetitive modeling
tasks, a parametric and smart oil well drill-string) module has been prototyped,
which enables generation of 3D models with built-in engineering rules, con-
straints, and controls on various application cases with changing situations

Fig. 4 Flowchart for determining casing setting depth and size

An Example of Feature Modeling Application 65

www.manaraa.com

throughout a well-drilling life cycle. A common part data sheet has been integrated
into the system so that standard parts can be reused from a well-defined library.
Figure 6 shows the steps of the drill-string design process, from conceptual design
to 3D model realization.

Select Lowest Cost Casing from the
Potential Candidates

Conceptual Design Complete

Calculate Axial Load

Data sheet

Add Minimum Casing Section

Selection of Lowest Cost Casing from
the Potential Candidates

Design Load curve

Burst Load at Casing Shoe

Burst Load at Casing Surface

Collapse Load at Casing Shoe

Collapse Load at Casing Surface

Input (Design Factor,
Minimum Casing Section,

Available Casing, Injection
Pressure etc.)

C
asing D

esign R
ule B

ase

Are Available
Casings Capable to
Meet Total Depth?

Allowable Length of Available Casings

Is TVD Achieved?

Add Min (Minimum Casing Section,
Next Break Point)

Is it Previous Casing?

Is Axial Load ok?

Report

Yes

Yes

Yes

Yes

No

No

No

No

Is (TVD – Casing
Covered)<Minimum

Casing Section?

Reject Previously Selected Casing

Add (TVD-Casing Covered)

Is Capable to use up
to TVD?

No

No

Yes

Yes

Fig. 5 Flowchart of casing selection

66 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

Drill-string design begins after the operational requirements have been defined
based on the casing design output and customer input. The operational require-
ments include type of the well, depth, mud-specific gravity, maximum WOB,
margin of over pull, safety factors for collapse, type of drill pipe available in the
inventory, drill collar, and heavyweight drill pipe size.

The drill-string design module of the DrillSoft system generates the conceptual
design based on a set of built-in engineering rules embedded in the module that
follow the recommended practice for drill-stem design standards [3]. One such
rule is that the ‘‘drill pipe should always be under effective tensile stress; neutral
point of buckling should be in the drill collar.’’ In the conceptual design stage,
calculating the length of the drill collar requires WOB data. The system then
selects the cheapest (in most of the cases also the weakest) drill pipe type from the
available inventory and checks it against the load criteria. If the type is not safe to
run the whole length of the drill-string, the allowed maximum length of that drill
pipe type is worked out. The drill pipe selection cycle continues until the whole
length of the drill-string is achieved. Hence, the algorithm selects the cheapest
drill-string assembly based on the lowest grade and the unit weight of the pipes in
the inventory.

Once the conceptual design of the drill-string is complete, the next step is to
determine the drill-string component specifications and configurations. The
configuration design determines the number and types of components and their
orientation and position in the drill-string assembly. As the drill-string is a vertical

Acceptable?

…

…

No Yes

Drill String Operational Requirements (EXCEL):
Well depth, size, margin of overpull, weight on bit, etc.

Conceptual Design (EXCEL):
Selections of drill pipe, length of drill pipe and drill collar etc.

Drill String Specifications Part data sheet
(EXCEL)

System Design Assembly (NX)

Sub-assembly 1(NX) Sub-assembly 1…n (NX)

Component 1 (NX) Component 1...n (NX)

Array of Components & Sub-assembly (NX)

3D Model of Drill String (NX)

Analysis

Design Complete

Fig. 6 Drill-string design
module

An Example of Feature Modeling Application 67

www.manaraa.com

column, all components of the string possess the same origin for the x and y
coordinates, i.e., (0, 0). Only the vertical coordinate changes when a new part is
added to the assembly. Rules have been created to determine the origin or position of
a new component. The following rule determines the z-coordinate of the drill pipe:

Origin z� coordinateð Þ of Drill pipe ¼
HWDP o þ Drill collar o þ Bit sub o þ Drill bit o

here,
HWDP_o, Number of HWDP*Length of HWDP ? Origin (z-coordinate)
Drill_collar_o, Number of Drill_collar * Length of Drill_collar ? Origin

(z-coordinate),
Bit_sub_o, Origin (z-coordinate),
Drill_bit_o, Origin (z-coordinate).

The positions of other components are similarly determined. A part data sheet
prototype has been developed, containing the geometric and non-geometric
specifications of each component. For example, a drill pipe has length, outer
diameter (OD) , inner diameter (ID) and tool-joint diameter, upset diameter, and so
on. Figure 7 shows a drill pipe sub-assembly with its components.

Figure 8 shows part of the drill pipe data sheet prototype. In this data sheet,
each drill pipe is defined by six unique factors: size, class, nominal weight, grade,
type of upset, and connection. The values of these six factors must be provided, but
the specification generation method will retrieve the rest of the specifications from
the data sheet that requires generation of the 3D model.

The system automatically retrieves the necessary data according to the library
specifications of each component, and generates the 3D CAD model as well as a

Tool joint pin

Drill pipe body

Tool joint box

Fig. 7 Drill pipe sub-
assembly and components

68 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

Fig. 8 Partial view of drill pipe data sheet

An Example of Feature Modeling Application 69

www.manaraa.com

parametric data file known as a CAD expression file. Figure 9 shows the steps
involved in the parametric approach for designing the drill pipe tool-joint box.
First, the design parameters are identified and initiated by an engineer in Excel
format, as shown in Fig. 9a. Engineering constraints are modeled as embedded
formulas across different cells and are checked interactively or semiautomatically
by using Excel functions, such as a ‘‘goal seeking’’ algorithm. Next, after verifying
the accuracy and constraints involved, the parameter names and the result values
are exported into a text format in the form of expressions, as shown in Fig. 9b; this
is an acceptable format that allows CAD software NX to import into it directly as
data input corresponding to built-in expressions. Third, the CAD solid model is
constructed by programming NX Open API functions, which are available as a
development extension for the CAD software. The source codes are shown in
Fig. 9c. Fourth, once the initial template models are generated, the expressions
associated with the predefined parameters in the CAD models are then imported
into the CAD environment for the given well drill-string and the casing. A CAD
part model is shown in Fig. 9d.

For better appreciation of the procedure, the next part of this section explains
how NX Open API functions are used with C programming language to generate
3D models. A ‘‘top–down’’ assembly approach has been followed. First, the
structure of the whole assembly of the drill-string is created; the generic config-
uration of the drill-string assembly contains all possible drill-string components.
For example, a drill-string assembly consists of drill pipe, drill collar, heavyweight
drill pipe, bit sub, cross-over sub, drill bit, and so on. Depending on the operational
requirements, some components may not be required. For example, sometimes
heavyweight drill pipe is not used in the drill-string; in that case, the module that
creates the assembly structure will suppress the heavyweight drill pipe in the
assembly.

The next level of model generation is sub-assembly generation. The program
first finds out which member of the assembly contains sub-assembly from a
configuration definition, and then fires the rule to initiate sub-assembly creation.
Refer again to Fig. 7, in which a drill pipe sub-assembly was shown to contain
three parts: drill-pipe body, tool-joint pin, and tool-joint box. Such a structure
generation algorithm continues iteratively until the configuration of the whole
assembly is completed. It is worth mentioning that, in the ‘‘top–down’’ approach,
though the conceptual assembly tree structure is created first, in each of the
structure members, no physical component geometry entities are created until the
program reaches the next stage, in which the component geometry entities are
created.

Components have been created using feature modeling methodology. A com-
ponent is a collection of several features, such as a drill pipe composed of cylinder,
cone, hole, chamfer, and so on. Each component therefore requires its own
parametric feature-based program. Hence, individual parametric programs have
been written for each component to generate a generic 3D model. To reflect the
topological variations, the algorithm selects which generation functions to run. For

70 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

(d)

(b)

(a)

(c)

Fig. 9 Steps involved in 3D modeling. a Data file. b Imported expressions. c NX open
programming. d CAD model realization and expression file

An Example of Feature Modeling Application 71

www.manaraa.com

example, as shown in Fig. 10, a drill pipe body may have three different topolo-
gies: internal-external upset, external upset, and internal upset.

An array method has been implemented to repeat the component and subas-
sembly instantiation. As shown in Fig. 10, a large quantity of similar types of drill
pipe may exist in the drill-string; this array method helps to reproduce the drill
pipe and other components throughout the assembly.

The pseudocode shown in Fig. 11 is created to execute the array method for
drill pipe. Here, the dptotal is the number of drill pipes in the array, and
‘‘dst_btn_dp’’ is the distance between two neighboring drill pipes. These two
variables depend on both conceptual design and user input. Similar programs have
been written for other components that require repetition.

After the arrays of components and sub-assemblies are carried out, the 3D
model of the whole drill-string assembly is realized. This can be used to perform
FEA and simulation. If the result of the analysis is unsatisfactory, the program
redesigns the drill-string by following the same steps mentioned earlier; the whole
design loop is then integrated. Due to the time constraints of this research, the
drill-string module and analysis module have not been integrated, although more
work is to be done in the future.

(a) (b) (c)

Fig. 10 Drill pipe features. a Internal-external upset. b External upset. c Internal upset

for(i=0; i<dptotal; i++) {
{ if (i == 0) continue;

origin[2]=pos[2]+i*dst_btn_dp;
strcpy(iname,cname);
sprintf(iname+strlen(cname),"_%d",i);
flag=UF_ASSEM_add_part_to_assembly(*parent, pname, refset, cname,

origin, matrix, layer, &newinst, &status);
if(flag!=0) return(flag);

}
return(0); }

Fig. 11 Pseudo code to generate drill-string component and sub-assembly array

72 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

4.3 Operational Parameter Module

DrillSoft selects the best combination of WOB and RPM by calculating the cost
per foot for a given situation to predict bit performance. The program can be useful
for selecting the bit that yields the lowest cost per foot by repeating a set of WOBs
and drill-string rotation for several combinations of bits. The operational param-
eter module contains two parts. First, drilling coefficients are determined by using
offset data; second, these coefficients are used to determine the optimum WOB and
RPM. This module is constructed based on Bourgoyne and Young’s multiple
regression approach. According to Bourgoyne et al. [7], eight types of primary
drilling variables are required for the regression analysis: depth (D), penetration
rate (R), weight per inch of bit diameter (w/d), rotary speed (N), fractional tooth
wear (hf), Reynolds number parameter (NRE), mud density (ECD), and pore
pressure gradient (gp). These eight operational parameters are used to determine
the drilling coefficients. The drilling coefficients are then used to predict the
behavior of the field and are combined with other input to determine the optimum
WOB and RPM.

4.4 Report Generation

The developed program is capable of generating formal reports of design outcome.
These reports are very useful for future references and also helpful for further
analysis. For example, the operational parameter module generates a cost-per-foot
table. This table can be used as a tool for selecting the best bit for a particular
interval. Every module has a separate report-generation option; whenever a design
is complete the system can generate the corresponding report.

5 Demonstration of the System and Procedure with
a Case Study

The casing design module calculates casing setting depth by using formation pore
pressure and formation fracture pressure, and determines the size of hole and casing
of each section of the well. It then selects the optimum combination of casing string
from the available inventory. The drill-string design module will be discussed in
more detail later in this chapter. The operational parameter module works out
drilling coefficients, the optimum WOB, and the drilling rotary speed (RPM).
Drilling coefficients are determined according to the regression analysis procedure
of Bourgoyne and Young et al. [7]; at least 30 offset drilling data sets are required.
Optimum WOB and RPM are determined for the minimum cost. This program also
generates six different tables of economic performance as a function of WOB and
RPM as an operational guide, and produces formal reports for design details.

An Example of Feature Modeling Application 73

www.manaraa.com

5.1 Casing Setting Depth and Size Determination

The following inputs [38] are provided:
True vertical depth TVD = 11,000 ft;
Poisson’s ratio t = 0.4;
Over burden rv = 1psi/ft;
Trip margin (SG) 0.06;
Kick margin (SG) 0;
Minimum depth of surface section 3,000 ft;
Number of pore pressure input 8;
Type of formation Hard;
Production casing size 4.5 in.

The procedure first estimates the fracture pressure and determines the pore
pressure-trip margin (MSG) and fracture pressure-trip margin (FSG) based on the
input provided. Table 1 shows the estimated values.

After processing the input, the software tool calculates the mud density at the
true vertical depth (TVD). According to the theory, this is the density of mud
required to drill the well to the final depth. From here, the design stage is referred
to as production section design for the well. The next step is to determine the depth
at which the fracture gradient is equal to the mud-specific gravity; in other words,
the depth should reach the point at which the vertical line drawn from the mud
density curve touches the fracture gradient curve (Fig. 12). Once the depth of the
next section is known, the program determines the mud density required to drill up
to this depth. In this way, the process continues until the mud density becomes
smaller than the minimum fracture gradient or the depth becomes smaller than the
minimum casing setting depth. After the determination of casing setting depth, the
information is stored in a data sheet and can be shared with other modules.

Mud density at the TVD is MSG1 = 2.195. The depth at which MSG1 = FSG1

can be found by linear interpolation. In this program it is assumed that the con-
necting line between the two neighboring points is linear. The program now
determines the depth at which FSG1 = 2.195. The two neighboring points of FSG1

Table 1 Fracture pressure, FSG and MSG estimation

Input
number

Depth
(ft)

Pore pressure
(psi)

Pore pressure
(SG)

Mud density
(MSG)

Fracture
pressure

FSG

1 3,000 1,320 1.01 1.076 1.878 1.878
2 5,000 2,450 1.131 1.191 1.916 1.916
3 8,300 4,067 1.131 1.191 1.916 1.916
4 8,500 4,504 1.223 1.283 1.947 1.947
5 9,000 5,984 1.535 1.595 2.051 2.051
6 9,500 6,810 1.655 1.715 2.091 2.091
7 10,000 7,800 1.801 1.860 2.139 2.139
8 11,000 10,171 2.135 2.195 2.251 2.251

74 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

are FSG2 = 2.250 and FSG3 = 2.139 and the corresponding depths are
Depth2 = 11,000 ft and Depth3 = 10,000 ft, respectively.

Depth1 ¼
FSG1 � FSG2ð Þ Depth3 � Depth2ð Þ

FSG3 � FSG2
þ Depth2 ð2Þ

Depth1 ¼ 10; 496 ft

The next casing setting depth should thus be at 10,496 ft. The mud density
above 10,496 ft must now be determined. Again, the program uses linear inter-
polation; the following equation should be used:

MSG1 ¼
MSG3 �MSG2ð Þ Depth1 � Depth2ð Þ

Depth3 � Depth2
þMSG2 ð3Þ

Here, Depth1 = 10,496 ft, Depth2 = 11,000 ft, Depth3 = 10,000 ft,
MSG2 = 2.195, and MSG3 = 1.861. Thus, MSG1 = 2.026. These processes
continue until the mud density becomes smaller than the minimum value of the
fracture-specific gravity or the depth becomes smaller than the minimum surface
casing depth.

Figure 12 provides the graphical method of casing setting depth determination.
Figure 13 shows the partial view of the well schematic based on the output pro-
vided by the system. The casing and hole sizes are provided in Table 2.

0

2000

4000

6000

8000

10000

12000

1 1.5 2 2.5

M
ea

su
re

d
 D

ep
th

, f
t

Equivalent Pressure, specific gravity

Casing Setting Depth

Pore Pressure Mud Density Fracture Pressure

TVD FSG1=MSG1 Depth1

FSG2=MSG2 Depth2

Fig. 12 Casing setting
depth

An Example of Feature Modeling Application 75

www.manaraa.com

5.2 Case Study for Casing Selection

Surface casing is designed as per the procedure specified by Byrom [8]. The
necessary inputs are Depth = 3,000 ft, Mud density = 1.11, and Casing size = 13
3/8. Figure 13 shows the surface casing design user interface filled with input. It
should be noted that the options for depth and mud density are not provided in the
user interface. This is owing to the integration of different parts of the software,
which helps the program to automatically retrieve necessary information from the
system database. In this particular case, the program automatically retrieves the
depth and mud density values from the casing setting depth data sheet. The user
needs to provide the specifications of the available casing. The system takes in
such casing specifications as input data in a text file format, from which it retrieves
the required information. A sample file with the available surface casing specifi-
cations is tabulated in Table 3.

Fig. 13 Surface casing
design user interface

Table 2 Casing setting depth and size

Surface
casing

Intermediate 1
casing

Intermediate 2
casing

Production
casing

Depth (ft.) 3,000 8,882 10,496 11,000
Mud-specific

gravity
1.521 1.521 2.026 2.195

Casing size (in.) 13.375 9.625 7 4.5
Bit size (in.) 17.5 12.25 8.5 6.15

76 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

After receiving the input, the system calculates the collapse and burst rating at
the surface and at the casing shoe. In this particular case, the design collapse
pressure at the surface and shoe are 0 and 2,220 psi, respectively, and the design
burst pressure at the surface and shoe are 2,180 and 750 psi. The program then
determines the break points and the potential candidates that satisfy both the
collapse and burst ratings (as shown in Table 4).

In the course of developing this project, the researchers have created a
knowledge base containing various configurations of casing sizes for hard and
unconsolidated formation. Casing size usually depends on the formation types, the
number of casing subsections, and the production casing size. After receiving input
from the user, the inference mechanism sorts out the specific sizes for each section
of the well. Various combinations of casing sizes are possible. If the specific
production casing size is not available, then the system will recommend sizes from
the knowledge base.

According to the algorithm, the first break point (0 ft) contains all five available
casings as potential candidates. As available casings were listed according to the
priority of the user, the system assumes that the first casing is more economical
and then the next one, and so on. The system selects the first candidate, casing
number 1, with grade K-55 and weight 54.5, and adds the minimum casing section
(500 ft). The program then determines if the total depth has been achieved; if it has
not, the program again selects casing number 1 from the potential candidates. As it
is similar to the previous casing, this time the program will add a minimum value
of [Minimum casing section or (Next break point-Casing covered)], i.e., Min [500
(2,092-500 = 1,592)]. The program determines that the minimum casing section
(500 ft) is the smaller of these two values. Another 500 ft will then be added to the
previous casing. Its length is now 1,000 ft. As the closest break point is at 2,092 ft,
this process continues until the casing length has reached 2,000 ft. At this point,
the system determines that casing number 1 is still a potential candidate and is

Table 3 Specification and priority sequence of available casing

Casing
number

OD(inch) ID(inch) Weight (Kg/ft) Grade Connection

1 16 12.615 54.5 K-55 ST&C
2 16 12.515 61 K-55 ST&C
3 16 12.415 68 K-55 ST&C
4 16 12.415 68 N-80 ST&C
5 16 12.347 72 N-80 ST&C

Table 4 Casing selection
break points and potential
candidates

No. Break
points (ft.)

Potential
candidates

1 0 1,2,3,4,5
2 2,092 2,3,4,5
3 2,852 3,4,5
4 3,000 3,4,5

An Example of Feature Modeling Application 77

www.manaraa.com

similar to the previous casing. The minimum value here is (500, 2,092-

2,000 = 92) = 92 ft. Based on these conditions, the system selects casing number
1 and adds a length of 92 ft to the existing length. The total length of casing
covered is now 2,092 ft. As the desired depth is 3,000 ft, the system checks the
available potential candidates, selects casing number 2, and adds 500 ft to the
previous length. The new length is 2,592 ft, still less than the total desired depth.
The system again selects casing number 2 and works out the minimum value
between (500, 2,852-2,592 = 260 ft) = 260 ft. After adding this value, the
length becomes 2,852 ft. Another 148 ft of casing is required to complete the
casing string for the surface section. However, this remaining section is less than
the minimum casing section length and previously used casing (Number 1 and 2)
are not allowed to be used up to the full depth. Another casing type should be
selected, but if the system selects a new casing type it will not satisfy the minimum
casing section length. To solve this problem, a re-evaluation of the design is
required. The system re-evaluates the design and concludes that, instead of using
casing number 2 from 2,093 to 2,852 ft, casing 3 should be used to the total depth.
In this case, all the design criteria will be satisfied. The preliminary design based
on collapse and burst is now complete.

The next step is to check whether the casing string design will satisfy the axial
load criteria. From the case study presented, it is found that the casing string meets
sufficient safety standards with casings 1 and 3, in their relevant sections. This
concludes the surface casing conceptual design. Figures 14, 15, and 16 represent
the combined casing selection based on collapse, burst, and axial load. Table 5
shows the sample casing selection output as compared with a published result [38].

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

M
ea

su
re

d
 D

ep
th

, f
t

Collapse Load, psi

Series2 Series3 Series4
Series5 Series1

Collapse

Collapse
Design Line

Casing
1

Casing
3

Casing
2

Fig. 14 Casing selection
based on collapse load

78 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

5.3 Drill-String Design Demonstration

Embedded knowledge assists the system in developing the conceptual design of
the drill string based on previous modules’ output and users’ input. This con-
ceptual design is then used to generate the drill-string specifications and config-
urations, and later this information is converted into expression files. The

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000

M
ea

su
re

d
 D

ep
th

, f
t

Burst load, psi

Series2 Series3

Series4 Series1

Burst
Load Line

Burst
Design
Line

Casin

g 1
Casing

3

Fig. 15 Casing selection
based on burst load

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800

D
ep

th
, f

t

Axial load, 1000 lbf

Series2 Series3 Series1 Series4

Axial
Load
Line

1.6
Design
Factor

Casin

g 1
Casing

3

Fig. 16 Casing selection
based on axial load

An Example of Feature Modeling Application 79

www.manaraa.com

conceptual design and the CAD model are bridged through the expression files, as
shown above in Fig. 9. Any changes in the conceptual design will thus change the
expression files, and will be reflected in the 3D model.

Table 5 Comparison of casing setting depth

Section DrillSoft Published result [38]

Depth (ft) Mud SG Depth (ft) Mud SG

Surface 3,000 1.521 3,000 1.567
Intermediate 1 8,882 1.521 8,850 1.567
Intermediate 2 10,496 2.026 10,500 2.031
Production 11,000 2.194 11,000 2.170

Fig. 17 Drill-string design
user interface

80 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

To prove the concept of the developed module, a drill-string has been designed
as a test case. The case is taken from the API standard handbook. Figure 17 shows
the drill-string module user interface filled with input. Table 6 shows two of the
drill pipe types available in the inventory. User-friendly interfaces have been
created so as to integrate all the modules. The interfaces guide the user to develop
the well plan with less effort and in an organized sequence. More UIs are to be
introduced in the following sections.

Based on operational input, the rule-based system designed a drill-string that
uses two different types of drill pipes. As mentioned above, the program first
considers the most economical drill pipe among the available three. It first chooses
grade E75 and determines the safe length of 6,750 ft. After accounting for the
length of 21 drill collars, the drill-string has reached a length of 7,380 ft, which is
less than the required depth of 12,700 ft. The program then considers the second
type of pipe, grade X95, and decides to use this type for the remaining 5,320 ft.
When considering the collapse load, the program generates messages for the user;
in this case it is worked out to be 10,267 ft. The drill-string should not be run dry
below this depth, as doing so may cause damage in the string. Based on this
conceptual design, the system generates the necessary configuration and specifi-
cation files and converts these files into expression files.

In this work, drill-string design is based on the input of casing design as
introduced previously and the authors have developed a parametric well structure
model, which works out the casing setting depth and casing sizes and generates
different 3D casing sections. Figure 18 shows a partial drill-string assembly model.

5.4 Operational Parameter Optimization

The program provides two options for operation optimization depending on the
input in order to determine the optimum WOB and RPM. Option 1 assumes that
the abrasive constant, bearing constant, and drillability are unknown. Option 2
assumes that they are known. In Option 1, abrasive constant, bearing constant, and
drillability should be calculated first from the offset bit data; these values will then
be used in the rest of the calculations. The list of required input data for this option
is shown in Fig. 19. In Option 2, abrasive constant, bearing constant, and drill-
ability are given; the other required inputs are shown in Fig. 20.

Table 6 Conceptual design parameters for a drill-string

Drill-string components Length (ft) Number of array

Drill collar: 6 �0 0OD 9 2 �0 0ID 630 21
Drill pipe type 1: 4 �0 0 9 16.6 lb, grade E75, class2 6,750 225
Drill pipe type 2: 4 1/20 0 9 16.6 lb, grade X95,
Premium class

5,320 178

An Example of Feature Modeling Application 81

www.manaraa.com

The program also generates six tables, which include cost per foot, bit life,
footage drilled, final tooth wear, final bearing wear, and penetration rate. A cost-
per-foot table can be used to quickly identify (1) the best combination of bit weight
and rotary speed; (2) the best rotary speed for a given bit weight; and (3) the best
bit weight for a given rotary speed [7].

6 Comparison of the Generated Results with the Published
Sources

Validation of the various modules in the DrillSoft system was based on previously
published data. For example, the casing setting depths and mud-specific gravities
were compared with the published data from Rabia’s work [38]. The casing
selections generated were checked against Byrom’s [8]. The values of drilling
coefficients calculated by DrillSoft were benchmarked against the values from the
work of Bourgoyne et al. [7]. From these comparisons, it can be safely concluded
that the results produced by the DrillSoft program are satisfactory.

The program has the following advantages: (1) it automatically selects the
casing that meets all the loading criteria; (2) different modules are integrated with

Fig. 18 Partial drill-string
assembly [41]

82 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

each other and the flow of information from one module to another module is very
smooth; (3) design parameters obtained from the program are used to generate a
3D CAD model, i.e., drill-string and casing; and (4) the parametric CAD model
(drill-string) is connected with DrillSoft through automatically created expression
files.

DrillSoft has some limitations; however: (1) the determination of casing setting
depth and mud weight based on formation pore pressure and formation fracture
pressure does not always guarantee well bore stability; and (2) biaxial effects of
loading were not considered during the selection of casing. More research is still
required.

Fig. 19 Operational parameter optimization: option 1

An Example of Feature Modeling Application 83

www.manaraa.com

7 Summary

This chapter described a feature-based well-drilling system design approach
through a detailed case study. A prototype system that integrates three important
well-drilling planning stages (casing design, drill-string design, and operational
optimization) has been demonstrated. The software design concepts and the gen-
erative algorithms are presented. The results are promising. The prototyped soft-
ware tool can help the drilling engineer to interactively design and model the well
casing and the drill-string. The design modules are parametric and feature-based;
hence, they are capable of handling different configurations and topologies of
drilling components according to varying application conditions. At this moment,
the reported software tool can only handle vertical oil wells. More research should
be carried out to develop a generic model that can be equally applicable to hor-
izontal, extended reach, and multilateral wells. The approach proposed here could

Fig. 20 Operational parameter optimization: option 2

84 R. S. M. Rahman and Y.-S. Ma

www.manaraa.com

also be applied to integrate other well-planning modules, such as hydraulic
program, bit program, and time and cost estimation, into a comprehensive system.
It is expected that, with full implementation in the future, the prototype system will
be a very useful support tool for engineering decision making in drilling
companies.

Acknowledgments The authors would like to thank the Natural Sciences and Engineering
Research Council of Canada (NSERC) for its Discovery grant support (No. 355454-09) and the
University of Alberta for the faculty startup grant.

References

1. Akpan HO (2005) Efficient computational method for casing string design. Paper SPE 98790-
MS presented at the annual SPE international technical conference and exhibition. Abuja,
Nigeria. doi:10.2118/98790-MS

2. Al-Yami AS, Schubert J, Medina-Cetina Z, Yu OY (2010) Drilling expert system for the
optimal design and execution of successful cementing practices. Paper SPE 135183-MS
presented at the IADC/SPE Asia Pacific Drilling Technology conference and exhibition. Ho
Chi Minh City, Vietnam. doi:10.2118/135183-MS

3. American Petroleum Institute (1998) Recommended practice for drill stem design and
operating limits 7G, 16th edn

4. Anderson RA, Ingram DS, Zanier AM (1973) Determining fracture pressure gradients from
well logs. J Pet Technol 25:1259–1268

5. Austin AZ (1993) Benefits of 3D visualization to reservoir simulation. SPE western regional
meeting, Anchorage, USA

6. Bjornsson E, Hucik B, Szutak G, Brown LA, Evans H, Curry D, Perry P (2004) Drilling
optimization using bit selection expert system and ROP prediction algorithm improves
drilling performance and enhances operational decision making by reducing performance
uncertainties. Paper SPE 90752-MS presented at the SPE Annual Technical conference and
exhibition, Houston, Texas. doi:10.2118/90752-MS

7. Bourgoyne AT Jr, Young FS Jr (1974) A multiple regression approach to optimal drilling and
abnormal pressure detection. SPE J 14:371–384. doi:10.2118/4238-PA

8. Byrom TG (2007) Casing and liners for drilling and completion. Gulf Publishing Company,
Houston

9. Chiu TJ, Caudel FLW (1993) Development of an expert system to assist with complex fluid
design. Paper SPE 24416-PA presented at the SPE Computer Application, Houston, USA.
doi:10.2118/24416-PA

10. Chuna JC (2002) Drill-string and casing design for horizontal and extended reach wells, Part
1. Paper SPE 79001-MS presented at the SPE international thermal operations and heavy oil
symposium and international horizontal well technology conference, Calgary, Canada.
doi:10.2118/79001-MS

11. Chu CH, Song MC, Luo CS (2006) Computer-aided parametric design for 3D tire mold
production. Comput Ind 57:11–25

12. Devereux S (1998) Practical well planning and drilling manual. Penwell Publishing
Company, Tulsa

13. Dupriest FE, Koederitz W (2005) Maximizing drill rates with real-time surveillance of
mechanical specific energy. Paper IADC/SPE 92914-MS presented at the SPE/IADC drilling
conference, Dallas, USA. doi:10.2118/92194-MS

An Example of Feature Modeling Application 85

http://dx.doi.org/10.2118/98790-MS
http://dx.doi.org/10.2118/135183-MS
http://dx.doi.org/10.2118/90752-MS
http://dx.doi.org/10.2118/4238-PA
http://dx.doi.org/10.2118/24416-PA
http://dx.doi.org/10.2118/79001-MS
http://dx.doi.org/10.2118/92194-MS

www.manaraa.com

14. Eaton BA (1969) Fracture gradient prediction and its application in oilfield operations. J Pet
Technol 21:1353–1360. doi:10.2118/2163-PA (SPE 2163-PA)

15. Eren T, Ozbayoglu ME (2010) Real time optimization of drilling parameters during drilling
operations. Paper SPE 129126-MS presented at the SPE Oil and Gas India conference and
exhibition, Mumbai, India. doi:10.2118/129126-MS

16. Fear MJ, Meany NC, Evans JM (1994) An expert system for drill bit selection. Paper SPE
27470-MS presented at the IADC/SPE drilling conference, Dallas, USA. doi:10.2118/27470-
MS

17. Halal AS, Warling DJ, Wagner RR (1996) Minimum cost casing design. Paper SPE 36448-
MS presented at the SPE Annual Technical conference and exhibition, Denver, USA.
doi:10.2118/36448-MS

18. Hayes-Roth F (1987) Part 1: Expert systems applied to the petroleum industry upstream
portion. Paper SPE 22411 presented at the 12th World Petroleum Congress, Houston, USA

19. Heinz LR (1993) CHES: Casing hydraulic expert system. SPE Comput Appl 4:26–31.
doi:10.2118/24420-PA (SPE 24420-PA)

20. Jellison MJ, Klementich EF (1990) An expert system for casing string design. Paper SPE
20328-MS presented at the 5th SPE petroleum computer conference, Denver, USA.
doi:10.2118/20328-MS

21. Kasravi K (1994) Understanding knowledge-based CAD/CAM. Comput Aided Eng 13:72–78
22. Koo DY, Han SH (1998) An object-oriented configuration design method for paper feeding

mechanisms. Int J Exp Sys App 14:283–289
23. Kulakofsky D, Henry SR, Porter D (1993) PC-based dement job simulator improves primary

job design. Paper SPE 26110-MS presented at the SPE western regional meeting, Anchorage,
USA. doi:10.2118/26110-MS

24. Lee RS, Hsu JYH, Su SL (1999) Development of a parametric computer-aided die design
system for cold forging. J Mater Process Tech 91:80–89

25. Lin BT, Chan CK, Wang JC (2008) A knowledge-based parametric design system for
drawing dies. Int J Adv Manuf Tech 36:671–680

26. Ma YS, Tor SB, Britton GA (2003) The development of standard component library for
plastic injection mould design using an object oriented approach. Int J Adv Manuf Tech
22:611–618

27. Ma YS, Britton GA, Tor SB (2007) Associative assembly design features: concept,
implementation and application. Int J Adv Manuf Tech 32:434–444

28. Mabile CM, Hamelin JPA (1989) An expert system helps in formation recognition. Paper
SPE 19132-MS presented at the petroleum computer conference, San Antonio, USA.
doi:10.2118/19132-MS

29. Maidla EE, Ohara S (1991) Field verification of drilling models and computerized selection
of drill bit, WOB, and drillstring rotation. SPE Drill Eng 6:189–195. doi:10.2118/19130-PA
(SPE 19130-PA)

30. Marsh GL, Smith JR (1984) Exploratory Well Design for 5,000- to 7,500-Ft Water Depths,
U.S. East Coast. Offshore Technology Conference, Houston, Texas. ISBN 978-1-61399-077-
3

31. Martinez E (1992) Directional drilling expert system. Paper SPE 23664-MS presented at the
SPE Latin America petroleum engineering conference, Caracas, Venezuela. doi:10.2118/
23664-MS

32. Mattiello D, Sansone A (1992) CASCADE: a knowledge-based drilling engineering software
tool. Paper SPE 24273-MS presented at the SPE European petroleum compute conference,
Stanvanger, Norway. doi:10.2118/24273-MS

33. Mattiello D, Piantanida M, Schenato A, Tomada L (1993) Casing shoe depths accurately and
quickly selected with computer assistance. Oil Gas J 91:86–93

34. Menand S, Sellami H, Tijani M, Stab O (2006) Advancements in 3D drillstring mechanics:
from the bit to the topdrive. IADC/SPE drilling conference, Miami, USA

35. Mendes JRP, Morooka CK, Guilherme IR (2003) Case based reasoning in offshore well
design. J Pet Sci Eng 40:47–60. doi:10.1016/S0920-4105(03)00083-4

86 R. S. M. Rahman and Y.-S. Ma

http://dx.doi.org/10.2118/2163-PA
http://dx.doi.org/10.2118/129126-MS
http://dx.doi.org/10.2118/27470-MS
http://dx.doi.org/10.2118/27470-MS
http://dx.doi.org/10.2118/36448-MS
http://dx.doi.org/10.2118/24420-PA
http://dx.doi.org/10.2118/20328-MS
http://dx.doi.org/10.2118/26110-MS
http://dx.doi.org/10.2118/19132-MS
http://dx.doi.org/10.2118/19130-PA
http://dx.doi.org/10.2118/23664-MS
http://dx.doi.org/10.2118/23664-MS
http://dx.doi.org/10.2118/24273-MS
http://dx.doi.org/10.1016/S0920-4105(03)00083-4

www.manaraa.com

36. Morooka CK, Guilherme IR, Mendes JRP (2001) Development of intelligent systems for well
drilling and petroleum production. J Pet Sci Eng 32:191–199. doi:10.1016/S0920-
4105(01)00161-9

37. Myung S, Han S (2001) Knowledge-based parametric design of mechanical products based
on configuration design method. Expert Syst Appl 21:99–107

38. Rabia H (1985) Oil well drilling engineering principles and practice. Graham and Trotman,
London

39. Rabia H (1988) Discussion of minimum cost casing design for vertical and directional wells.
J Pet Technol 40:504–506

40. Rahman SMR, Ma YS (2011) Knowledge driven generic drill string modeling. Proceedings
of CANCAM, 23rd Canadian congress of applied mechanics, Vancouver, BC, Canada

41. Rahman SMR, Ma YS (2011) Smart modeling of drilling-well in an integrated approach.
MSc Thesis, University of Alberta, https://era.library.ualberta.ca/public/view/item/
uuid:e8fdf9d3-0144-4a6d-bb30-644d3bf6cf27

42. Rashidi B, Harland G, Nygaard R (2008) Real-time drill bit wear prediction by combining
rock energy and drilling strength concepts. Paper SPE 117109-MS presented at the Abu
Dhabi international petroleum exhibition and conference, Abu Dhabi, UAE. doi:10.2118/
117109-MS

43. Roh MI, Lee KY (2006) An initial hull structural modeling system for computer-aided
process planning in shipbuilding. Adv Eng Softw 37:457–476

44. Roque JL, Maidla EE, Wagner RR (1994) Casing cost optimization for complex loading
situations. SPE Comput Appl 12:24–29. doi:10.2118/28224-PA

45. Shokouhi SV, Skalle P, Aamodt A, Sørmo A (2009) Integration of real-time data and past
experiences for reducing operational problems. Paper SPE 13969-MS presented at the
international petroleum technology conference, Doha, Qatar. doi:10.2523/13969-MS

46. Siddique Z, Yanjiang Z (2002) Automatic generation of product family member CAD models
supported by a platform using a template approach. ASME DETC conference, Montreal,
Canada

47. Wojtanowicz AK, Maidla EE (1987) Minimum-cost casing design for vertical and directional
well. J Pet Technol 39:1269–1282. doi:10.2118/14499-PA

48. Zha XF, Du HJ, Qiu JH (2001) Knowledge-based approach and system for assembly-oriented
design, Part II: the system implementation. Eng Appl Artif Intell 14:239–254

An Example of Feature Modeling Application 87

http://dx.doi.org/10.1016/S0920-4105(01)00161-9
http://dx.doi.org/10.1016/S0920-4105(01)00161-9
https://era.library.ualberta.ca/public/view/item/uuid:e8fdf9d3-0144-4a6d-bb30-644d3bf6cf27
https://era.library.ualberta.ca/public/view/item/uuid:e8fdf9d3-0144-4a6d-bb30-644d3bf6cf27
http://dx.doi.org/10.2118/117109-MS
http://dx.doi.org/10.2118/117109-MS
http://dx.doi.org/10.2118/28224-PA
http://dx.doi.org/10.2523/13969-MS
http://dx.doi.org/10.2118/14499-PA

www.manaraa.com

Fundamental Concepts of Generic
Features

S.-H. Tang, Gang Chen and Y.-S. Ma

1 Introduction

To achieve information integration among CAx applications, a shared common
product model is crucial. Such a multi-view product engineering model should
support different disciplinary views for various applications. Here, the term view
refers to the context-dependent and self-contained interpretation data set (subset)
of the entire product model (EPM) related to one particular engineering domain or
aspect of the product.

In this chapter, a four-layer information integration infrastructure is presented
based on Tang’s work [28] for building the shared product model. Tang’s product
feature model is built on the Standard for the Exchange of Product model data
(STEP) framework [23], because STEP is the international standard and has been
widely accepted by both vendors and users. However, using only STEP-based
product specification cannot ensure feature model integration, because STEP does
not define interrelationships and constraints between applications. In this product
model, the STEP framework is extended with a new concept, the unified feature
model [4], under which a generic feature representation schema is given. Next,
design and manufacturing feature models are described based on the new concept.
The different definitions of slot features in both applications are analyzed as

S.-H. Tang
Guangdong University of Technology, Guangzhou, Guangdong,
People’s Republic of China
e-mail: fwei@scut.edu.cn

G. Chen
Tianjing University of Science and Technology, Tianjin,
People’s Republic of China
e-mail: chengang@tust.edu.cn

Y.-S. Ma (&)
University of Alberta, Edmonton, Alberta, Canada
e-mail: yongsheng.ma@ualberta.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_4, � Springer-Verlag London 2013

89

www.manaraa.com

examples. For feature-based modeling processes, the concept of operation is
introduced, followed by its representation schema. Finally, the cellular geometric
model, shared by different applications, is described.

As reviewed in ‘‘A Review of Data Representation of Product and Process
Models’’, most of the current software tools for product development are already
feature based, but are limited to individual applications. In the authors’ previous
work [28], the proposed information integration infrastructure supports multi-stage
applications throughout the product lifecycle, owing to the adoption of a unified
feature modeling scheme [4]. This infrastructure is centered with a core model
representation of a basic feature type, generic feature, which is defined based on
the associative feature constraint management method.

The definition of generic feature was first introduced in Chen et al.’s work [5],
which used unified modeling language (UML) and in which it was dubbed a
‘‘unified feature.’’ The authors felt it necessary to reconsider the name convention
for the related feature terminology. As shown in Fig. 1, the authors decided to give
a clear definition of generic feature, which is supposed to be the smallest grain
element in the so-called feature-based informatics domain. In fact, the only change
that has been made from the original publication is that the name ‘‘unified feature’’
has been changed to generic feature. The reason for this renaming is to maintain
the consistency of conceptual understanding about the proposed feature-based
theoretical informatics model. Generic feature is defined as the most basic feature
entity template, or a common class as defined in an object-oriented software
engineering approach; that is, the ultimate bottom-level engineering character-
ization data structure. Generic feature is expected to reflect the reusability and
abstracting capability of the engineering semantic patterns for different engi-
neering applications. The term unified feature is reserved to refer to the systematic

1

IAttribute

IConstraint

0..*

0..*

0..*

0..*

Generic Feature

Constraint

Priority
VariablesAttribute

Topological Entity

0..* 0..*

FeatureModel

0..*

0..*0..*

Parameter

1

1..*

 0..*

Other
Constraints

Geometric
Constraint

Self-
described
Attribute

Association
Attribute Algebraic Constraint

dependency generalization aggregation composition

Fig. 1 Generic feature model enhanced from Chen et al. [5]

90 S.-H. Tang et al.

http://dx.doi.org/10.1007/978-1-4471-5073-2_2
http://dx.doi.org/10.1007/978-1-4471-5073-2_2

www.manaraa.com

framework that has been developed for implementing application systems based
on the generic feature definition.

As shown in Fig. 1, generic feature consists of four main fields: Attributes,
parameters, constraints, and topological entity pointers. Attributes here refer to the
properties of the feature that do not specify a feature’s shape, dimension, orien-
tation, or position, but rather such attributes as material and surface finish (which
are self-describing attributes), and non-geometric entities such as functions, rules,
and machining operations (which are association attributes). On the other hand,
parameters are the key to describing the shape, dimensions, orientation, and
position of entities. Topological entities are those that can be shown to the user on
the screen, such as a point, line, cylinder, or cube.

The major fields and methods defined in the generic feature class are described
in Table 1 below with reference to Ma et al.’s recent work [13]. Again, note that
there has been a name change, such that the common generic class definition,
abstracted from different features, has been renamed from the original unified
feature to generic feature.

2 Generic Feature Model

Theoretically, the unified feature model allows different applications to define
specific features in a unified approach. Application features are modeled as the
child class of the generic feature. In other words, unified feature modeling allows
for the coexistence of specific views for different applications. However, although
from an application point of view it is essential that each feature type has a well-
defined meaning, or semantics, as a base class, a generic feature definition that
enables common mechanisms, such as data storage, searching, validation, updat-
ing, and information sharing, must be modeled and developed. For more details
about the class definition and properties of generic features, see Ma et al. [12].

The generic feature class includes the structured description of all common
properties and methods of application feature types. Such properties include fea-
ture shape representation with parameters, constraint types, reference mechanisms,
and validity methods. For example, all types of constraints are used for capturing
design intent in the context of product design models. The generic feature rep-
resentation schema in EXPRESS-G for database design and implementation can
also be found in the literature [12]. The generic feature model provides a template
for application-specific feature definition.

2.1 Feature Shape Representation

Representing the shape of a feature means defining feature geometry, topology,
and their associated entities, such as Attributes, parameters, and feature

Fundamental Concepts of Generic Features 91

www.manaraa.com

manipulation (e.g., creation, modification, and deletion) functions. Feature
parameters support user interfaces to create and modify features in modeling
operations. To explicitly maintain the shape of a feature in a part model, shape
representation in the research discussed here is based on the cellular topology of

Table 1 Major fields and methods of the generic feature class [13]

Class
section

Element types Member element
lists

Description

Fields Attributes Association
attributes

Identities of the associated objects, such as
functions and behaviors in a conceptual
design, machines and cutters in a process
plan, other features, etc.

Self-describing
attributes

Material, surface finish, belonging application,
etc.

Parameters Variables used as input to geometry creation
methods

Constraints Geometric
constraints

Dependency relations among the feature’s
geometrical and topological entities

Algebraic
constraints

Engineering equation relations among the
feature’s self-defined attributes and
parameters, mainly applied for physics and
mechanism principle formulas

Rule-based
constraints

Identities of rules that the feature or its self-
describing attributes, parameters, or
numerical constraints participated in

Geometric references Topological entities
Methods Geometry

construction
createGeometry() Generate the feature geometry

Interface to
geometric
model

getCell() Retrieve the feature’s member cell entity
properties by a pointer or a name

setCell() Assign a topological entity as the feature’s
identity

insertGeometry() Notify the geometric model to insert the feature
geometry

deleteGeometry() Notify the geometric model to delete the
feature geometry

Interface to
expert
system

getFact(), setFact() Retrieve or create the corresponding facts
getRule(), setRule() Retrieve or assign the corresponding rules
checkRule() Check whether the related rules are satisfied or

not
Interface to

relation
manager

addToJTMS() Add a node to the graph of JTMSJustification-
based truth maintenance systems (JTMS)
managed by the system to track the feature,
and its constraints, attributes, and
parameters for validation-checking
purposes

validityChecking() Call the relation manager for feature validation
Interface to

database
saveFeature(),

retrieveFeature()
Store a feature in or retrieve a feature from the

database

92 S.-H. Tang et al.

www.manaraa.com

ACIS, which is on the top of the common B-rep model. For example, a block
feature may have four parameters: length, width, height, and position point (see
Fig. 2). Creation of a block feature is associated with the function api_solid_-
block(), which creates a primitive solid block with two positions. With these four
parameters and feature creation schema, the shape of the block feature can be
determined. Note that the length parameter is along the x-axis; the width parameter
is along the y-axis; and height is along the z-axis. Other primitive features with
parameters, such as cone, cylinder, wedge, and sphere, are shown in Fig. 3.

Table 2 lists other types of features with their basic parameters. Note that in the
authors’ opinion, datum entities (which include datum plane, datum axis, and
datum point) are also regarded as a kind of feature.

2.2 Validity Condition (Constraint) Definition

Validity conditions, namely constraints, must be explicitly defined in the unified
feature model to specify relationships among features and geometric or topological
entities, and provide invariant characteristics in the model.

Constraints may have various types. Some classifications, such as Dohmen’s [7]
and Bettig and Shah’s [2], are reviewed below. In this work, we follow the
classification by Dohmen (which is also used in most current CAD systems).
Constraints can be classified as geometric constraints, dimension constraints,
algebraic constraints, or semantic constraints, a constraint schema defined by Ma
et al. [12].

Geometric constraints specify the geometric relations between feature ele-
ments; they can be classified into two categories, dimensional and semantic.
Dimensional constraints specify distances between two feature member entities.
Semantic constraints specify the topological properties of feature elements. For a
vertex, edge, or face, a semantic constraint specifies the extent to which the

Length

x

z

y

Width

Height

Position
point

Fig. 2 Block feature

Fundamental Concepts of Generic Features 93

www.manaraa.com

element must lie on the product boundary. For a volume, a semantic constraint
specifies the extent to which the volume is allowed to be intersected by other
feature volumes instantiated later [7]. For example, a through_hole feature has
semantic constraints in that the cylindrical side face must at least be partly on the
material boundary, and the top and bottom faces of the cylinder must not be on
the material boundary. If in the later design stage, a boss, which is a solid with
material, is placed just over the hole, the semantic constraint on the top face is
violated, and the through_hole feature is no longer valid. It becomes a new
blind_hole feature. If both the top and bottom of the cylinder space are blocked
with other material features, the feature then is transformed into a hollow_space
with no accessibility to the open space.

In the generic feature definition, constraints are modeled as Attributes attached
to topological entities or sub-features with the associative validation methods
defined in the feature definition. Although different types of constraints have
different attributes, some attributes are common:

• Constraint_ID is the identifier of a constraint instance.
• Constraint_name specifies the name of a constraint instance.
• Owner_ID uniquely identifies which feature a constraint belongs to.
• Constraint_expression represents the relationship between the constrained

elements and referenced elements.

Fig. 3 Other primitive features with parameters

94 S.-H. Tang et al.

www.manaraa.com

• Constrained_entity_ID is used to specify a list of pointers of the constrained
entities.

• Referenced_entity_ID list can be used to uniquely identify referenced entities.
In modern CAD systems, the reference_entity, which is the existing geometry
(a face, edge, or vertex), is regarded as a kind of datum for positioning
(or orienting) a new feature.

Table 2 Other features with parameters

Feature type Primary feature parameters

Slot 1. A 2D profile (e.g., U profile)
2. A path
3. Slot end type (if it is not through slot)

Hole Simple hole ? 1. Radius
2. Depth

Countable hole ? 1. Countable_hole radius
2. Countable_hole depth
3. Hole radius
4. Hole depth

Pocket 1. The pocket profile (rectangular or circular)
2. Depth
3. Corner radius
4. Floor radius

Extrusion 1. A 2D sketch profile
2. An extrusion path (or direction with distance)

Revolution 1. A 2D sketch profile
2. An axis
3. Revolution angle

Sweep 1. A 2D sketch profile
2. A sweep guide (path)

Chamfer 1. An edge (chain of edges) or connected faces
2. Two distances (or a distance with angle)

Fillet 1. An edge (chain of edges) or connected faces
2. Radius

Array Rectangular ? 1. Arrayed objects
2. Column offset with number of instances
3. Row offset with number of instances

Polar ? 1. Arrayed objects
2. Axis of polar
3. Number of instances (with fulfilled angle)

Offset 1. Offset objects
2. Offset distance with direction

Mirror 1. Mirror objects
2. Mirror plane

Datum Datum plane ? 1. A point
2. A plane normal (vector)

Datum axis ? 1. A point
2. A direction (vector)

Datum point ? A point

Fundamental Concepts of Generic Features 95

www.manaraa.com

• Constraint_strength has an enumeration data type, which may include several
levels, such as required, strong, medium, or weak. It represents the extent to
which the constraint needs to be imposed when constraints conflict with one
another.

• Constraint_sense is used to specify the direction between constrained entities
and referenced entities.

• Constraint solving functions are responsible for solving constraints according to
constraint types.

• Other manipulation functions may include attribute access functions, behavior
control functions, and so on.

The definition of constraint_strength is for handling over-constrained situations.
Such constraint attributes were used in another external constraint solver, SkyBlue,
to solve the over-constraint problem [21, 22]. The use of constraint_strength is
supported by this solver. SkyBlue constraints each have an associated priority, or
strength, indicating how important it is to satisfy the constraint. A constraint of
lower priority is said to be weaker than a constraint of higher priority, which is
called stronger. The highest strength is ‘‘required;’’ the lowest is ‘‘weak.’’ An
arbitrary number of strength levels may be defined. If the SkyBlue constraint graph
has conflicting constraints, SkyBlue will always determine a solution such that no
unsatisfied constraint can be satisfied by making a weaker constraint unsatisfied. An
example is shown in Fig. 4. Note that in the figure, a box represents a constraint,
and a circle represents a variable or parameter. In the first graph, the strong con-
straint C2 has just been added. The second graph shows a possible chain of con-
straints without conflicts; in order to satisfy C2, weak constraint C1 is left
unsatisfied. Another solution would be to leave C4 unsatisfied instead of C1. Since

weak

C1

strong medium weak

C2 C4C3V1 V2 V3

weak

C1

strong medium weak

C2 C4C3V1 V2 V3

V3

weak

C1

strong medium weak

C2 C4C3V1 V2

Fig. 4 Constraint_strength for constraint solving

96 S.-H. Tang et al.

www.manaraa.com

C1 and C4 have equal strength, SkyBlue will arbitrarily choose one of these
solutions. The third graph shows the solution that results when the strength of the
constraint has been set to medium. Here, C4 is left unsatisfied. For details of
constraint solving in SkyBlue, please refer to Sannella [21, 22].

The constraint_sense attribute can be assigned with two string options, directed
and undirected. A constraint is directed if any of the members of the constrained
entities is constrained with respect to a sequence of evaluation, where those ref-
erenced entities must exist and be evaluated first. A constraint is undirected if there
is no required sequence of evaluation among referenced entities, and the constraint
is mutually applicable among member-constrained entities. Stated differently, in
the undirected constraint, there is no difference between constrained entities and
referenced entities [12].

2.3 Other Generic Feature Properties

Other properties defined in the generic feature schema can be defined as follows:

• General feature Attributes. General feature attributes such as feature_name and
feature_id are defined to serve as the index for searching during feature mod-
eling operations.

• Feature type. Feature type is essentially determined by the instance feature class
name derived from a generic feature class, e.g., block feature or slot feature.

• Depended_feature_id list. To maintain feature relationships, feature dependency
relations should be kept during the modeling procedure [26]. The feature
dependency relation is described by Bidarra et al. [3]: ‘‘feature f1 directly
depends on feature f2 whenever f1 is attached, positioned or, in some other way,
constrained relative to f2.’’ The feature dependency graph illustrates the feature
dependency relations with a simplified constraint graph. In the graph, each of
the edges of the graph is directed. The direction of each edge in the feature
dependency graph runs from one feature to another feature that depends on it.
For example, the part in Fig. 5 can be expressed as both a constraint graph and
feature dependency graph as shown in Fig. 6. In these graphs, the slot and two
holes are depended_feature of the base block feature. Depended_feature_id
records the feature dependency relation. It plays an important role in main-
taining the feature dependency graph, as well as in maintaining feature rela-
tionships during feature modeling operations. Modern CAD systems also retain
feature dependency relations. For example, in Siemens NX 7.0, users can query
all such information.

• Feature label is an entity_list in the feature definition, used to record feature
elements. Feature labels are attached as attributes to feature member entities,
e.g., faces, edges, and vertices.

• Domain specification. As the proposed feature model must support collaborative
feature-based modeling among multiple applications [30], domain is used to

Fundamental Concepts of Generic Features 97

www.manaraa.com

designate which application a feature belongs to. Domain has the enumeration
data type; values can be ‘‘design,’’ ‘‘manufacturing,’’ ‘‘assembly,’’ and others.
By specifying different domains, multiple application features that refer to the
same product geometry can coexist in the feature-oriented database.

• Nature. The nature feature is the enumeration data type, which is either additive
or subtractive. Additive means that the feature is to be instantiated by adding
material. Subtractive means that the feature must be obtained by subtracting
material.

2.4 Member Functions

• Attributes access functions need to be defined to manage a feature’s attributes.
Most of these functions are common to all types of features, e.g., backup(),
findOwner(), findConstraint(), getParameter(), setParameter(), and so on. Other
specific attribute methods for individual application features will be addressed at
the application level.

• Modeling operation functions. These functions are used to control the behavior
of a feature during a modeling operation, e.g., creating, editing, deleting,
splitting owners, merging owners, or translation.

• Feature validation functions. Whenever a feature operation is activated via the
user interface, the product model needs to be modified and updated. This process
requires feature evaluation, which ensures the consistency of the geometrical
model at low levels. In the work discussed here, the run-time product model is
generated via an integrated solid modeler and managed based on the database
records. All feature evaluation functions triggered by such operations call the
solid modeler’s APIs to access and determine the geometrical procedures; they
are implemented separately in the feature classes. In this way, the details of

1

2

4
3

1. <block>
2. <slot>
3. <hole1>
4. <hole2>

Fig. 5 A simple example
part

98 S.-H. Tang et al.

www.manaraa.com

(a
)

(b
)

F
ig

.
6

C
on

st
ra

in
t

gr
ap

h
an

d
fe

at
ur

e
de

pe
nd

en
cy

gr
ap

h
of

sa
m

pl
e

pa
rt

(a
)

C
on

st
ra

in
t

gr
ap

h,
(b

)
F

ea
tu

re
de

pe
nd

en
cy

gr
ap

h

Fundamental Concepts of Generic Features 99

www.manaraa.com

geometrical operations are maintained by the solid modeler; hence, the devel-
opment effort is significantly reduced. Theoretically, feature process functions
can be classified into two kinds, those dealing with the geometry and those
managing constraints. With the incorporation of a solid modeler, feature process
functions rely on the solid modeler for manipulating and validating feature
geometry. Constraint solving functions need to call on specific algorithms
defined in the individual constraint sub-classes to solve different associative
relations according to their types.

• Save and restore function. For repository purposes, feature saving and restoring
functions, which are the interactions between the run-time feature model and the
database, must be defined in the unified feature model classes, because these
functions have to organize information for different application views according
to users’ requirements.

3 Advanced Feature-Based Engineering Modeling:
A Prospect of Advanced Design and Manufacturing
Methodology

It is expected by the authors that with the generic feature implementation and the
related database schemas [14, 16], the implementation methods of different fea-
ture-based engineering applications can be unified and developed within a sys-
tematic framework. A holistic feature-based engineering informatics modeling
scheme that is based on the generic feature concept presents a complete product
and process information repository, and supports high-level feature information
integration across different engineering application software tools; this is dubbed
unified feature modeling. This approach is to be introduced in ‘‘Unified Feature
Paradigm’’. The authors suggest a unified information infrastructure model that has
been published by Tang et al. [29] with reference to Zha and Du’s work [31]. To
briefly introduce the concept, a partial schema-level EPM representation is defined
as shown in Fig. 7. A design feature model and a manufacturing feature model are
represented as sub-models in the application layer; they need to be integrated with
application-specific functional modules. The commonly shared feature information
model below the application modules contains all components defined with a
unified feature modeling scheme supporting the entire product model (EPM) with
generic features as the basic semantic building units. The EPM describes infor-
mation across applications, and contains the domain classification ontology and
metadata. This layer contains assembly-part models, product geometry and
topology, the related attributes, and so on. This chapter is dedicated to presenting
the fundamentals of the generic feature concept.

All EXPRESS-G representations in this work follow a convention defined by
the ISO standard [9], as shown in Fig. 8. Note that in this work, those entities
shown in EXPRESS-G diagrams with page reference ‘‘#, #’’ have been defined in
the standard.

100 S.-H. Tang et al.

http://dx.doi.org/10.1007/978-1-4471-5073-2_5
http://dx.doi.org/10.1007/978-1-4471-5073-2_5

www.manaraa.com

In this chapter, we focus only on the feature-based design and manufacturing
models of a product, which includes geometry, constraints, parameters, and
dimensions. Other related information, such as product-related documents and
categories, are not discussed here. In the following section, design and manufac-
turing feature models are described.

4 Application-Specific Feature Models

Much research effort has been directed toward feature classification. Shah and
Rogers have classified features according to three basic forms: form features,
precision features, and material features [25]. They considered that features can
represent other logical information sets, such as assembly relations and functional
entities. Rossignac clarified the distinction between intentional features and their
geometric embodiment, and between volume features and surface features [20].

Part_model

Assembly_model

Unified_feature_model

Parameter Dimension Feature_graph

Geometry_reference manager

Constraint Tolerance

Design_featureManufacturing_feature Other_applcation_feature

Geometry Topology

Geometry.entity Topology.entity
Entire product model

Generic_feature_model

Fig. 7 Partial schema-level EPM (enhanced from Tang [28])

Fundamental Concepts of Generic Features 101

www.manaraa.com

Juri further classified the form features into primary and secondary, and also into
external and internal. Primary features correspond to cylindrical and conical shafts,
whereas the secondary are holes, threads, fillets, and so on [10]. In this work, we
consider only design and manufacturing features. The design feature classification
used here is similar to those in commercial CAD systems (such as Pro-E, NX, and
others). The classification of manufacturing features is based on the AP 224 of
STEP.

4.1 Design Feature Representation

4.1.1 Design Feature Representation Schema

In this section, design features are used as an example subgroup to illustrate how
application-specific feature models can be defined. A design feature model can be
expressed as shown in Fig. 9.

The primitive feature type is separated into two subtypes, additive and sub-
tractive features. Additive features include all instances of features formed by
adding material, such as cylinder, taper, sphere, boss, block, torus, and so on.
Subtractive feature types represent all features such as hole, pocket, and slot that
are formed by subtracting material. The transition feature type includes chamfer,
edge_round, and fillet, which are always associated with other primitive features.
The compound feature type is a union of several primitive features. Datum, which
is used as the reference for feature-based modeling, is also regarded as a kind of
design feature in the authors’ opinion. Datum has three subtypes, namely datum
plane, datum axis, and datum point. Additional feature types such as extrusion,
revolution, sweep, and others are also accommodated in this schema. Each specific

.

#, #,

: Schema

: Defined type

: Referenced entity

: Page reference

: Entity

.

: Enumerated data type

: Used entity

: Relationship with direction
A B represents entity A has
entity B as its explicit attribute

: Inheritance relationship line

: Normal relationship line

Fig. 8 Symbol convention of EXPRESS-G [9]

102 S.-H. Tang et al.

www.manaraa.com

design feature type has predefined explicit geometry, topology, parameterization,
and constraints specifications. Note that not all the feature types are included in
this schema, because the number of feature types is infinite [24]. But by using the
generic feature model, feature definitions are extensible.

4.1.2 Example of a Design Feature Definition: Slot

Based on the generic feature definition, design features such as slot can be defined
in EXPRESS-G according to STEP AP 224 [9], as shown by Ma et al. [12]. The
Slot feature class inherits all the common properties and methods from the generic
feature class.

(ABS)

Design_Feature

(ABS)Primitive_Feature

(ABS)Transition_Feature

(ABS)Compound_Feature

Hole

Planar_Face

Step

Pocket

Slot

(ABS)Subtractive_Feature

(ABS)Additive_Feature

Chamfer

Edge_Round

Fillet

Block

Boss

Cylinder

Sphere

Torus

Taper

...

...

...

Datum

Extrusion

Other feature type
Revolution

Sweep

Mirror

Array

Offset

Datum plane

Datum axis

Datum point

Fig. 9 Design feature representation schema

Fundamental Concepts of Generic Features 103

www.manaraa.com

Generic Shape Representation of Slot Feature

The shape of the slot feature is expressed as swept depression volume with a cross-
section profile and a continuous curve of travel. The member elements associated
with a slot feature are listed below:

• Course_of_travel. This member entity specifies a 3D space curve (e.g., line and
circle), that when combined with a ‘‘profile,’’ creates the shape of the slot. The
course_of_travel can be represented as a path in EXPRESS-G. A path shall be
defined as the geometrical entity pointer, which serves as the input parameter for
the slot feature creation function.

• End_conditions. End_conditions specifies the type of implicit shape at the ends
of the slot, which can be blind_slot_end_type or open_slot_end_type [28].
Different slot end types require different parameters. These parameters are
associated with the create_slot_end function that will be called in the slot
feature creation function.

• Sweep_shape. The sweep_shape defines the sectional 2D sweeping profile.
When combined with the course of travel, the sweep operation creates the shape
of a slot. For the slot feature, the sweep_shape is represented as an open_profile
that could be square_u_profile, rounded_u_profile, linear_profile, vee_profile,
partial_circular_profile, or tee_profile. Each type of 2D profile has its own
initializing parameters. For example, square_U_profile has two parameters,
length and height, which will be used in create_profile() functions to create the
2D profile. This 2D profile will be defined as an entity pointer and will serve as
an input parameter for the slot feature creation function.

Constraints

In the slot feature definition, constraints are regarded as an attribute list attached to
the slot feature, and are therefore defined as an attribute list. Different types of
constraints (e.g., distance and angle constraints) are defined first. All the con-
straints are treated as common attributes in the feature’s attribute list and, to
maintain feature validity, are accessible for the validity check.

Other Feature Properties

• feature name: slot,
• depended_feature_id: entity_list,
• domain: ‘‘design,’’
• nature: ‘‘negative.’’

Given the slot feature definition described above, instantiating a design feature
slot shall be carried out in two steps: defining the shape of the slot and positioning
the slot feature. Using the through_slot feature with square_U_profile and a
straight line path shown in Fig. 10 as an example, the details are shown as follows:

104 S.-H. Tang et al.

www.manaraa.com

(a) Specify the type of the slot feature. This is to define the sweep shape (such as
square_U_profile, T_profile, or round_U_profile) of the slot feature by spec-
ifying the required parameters. In the instantiation function of slot feature, a
square_U_profile entity is then parametrically created.

(b) Specify the slot end type. A slot feature may have a number of end types. The
shape of the slot end will be created and combined with the main body of the
slot feature to complete the shape of the slot. A slot end type with parameters
will be recorded as the entity pointer. In the example cited here, for open_-
slot_end_type, no action will be taken for the creation of the slot end shape.

(c) Define a course of travel for the slot feature: it can be a line, a circle, or a 3D
space curve. By default, a straight line perpendicular to the sweeping profile
will be taken as the course of travel. This course of travel will be stored as an
entity pointer. Here, a course of travel with direction (0, -1, 0) is created by
specifying the start and end face of the slot.

(d) Create the body of the slot feature by sweeping the profile along the path. This
kind of operation will result in a solid as the main body of the slot feature. In
this example, the given square_U_profile is swept along the direction (0, -1,
0) for a distance equal to the distance between start face and end face of the
slot. The result is shown in Fig. 10.

(e) Position the slot feature. To position the slot feature on a planar surface,
dimension constraints, which are used to define constrained_entity (the
geometry of feature to be created) and referenced_entity (existing geometry on
the model), are used. In this case, for the definition of through_slot feature, two
coplanar constraints (C1 and C2) are defined to determine the start and end of
the slot feature. There is thus no need to set such a constraint along the y-axis. In
addition, a distance constraint, D, is used to dimension the distance between the
slot_left face (constrained_entity) and block_left face (reference_entity or
datum).

Open_slot_end_type

Square_U_profile
Parameters:
Width=30;
Height=15;

x

z

y

Slot_start

Slot_end

Path (direction
(0,0,-1))

Slot shape

Open_slot_end_type

Coplanar constraint (C0)
slot_start = block_front

Coplanar constraint (C1)
slot_end = block_back

Coplanar constraint (C2)
slot_top = block_top

Slot_top Block_top

Block_bottom

Block_front

Block_back

Block_left
Block_right

Slot_left

Distance constraint (C3)
D = fixed_value

Fig. 10 An open-ended slot design feature with the square_U_profile

Fundamental Concepts of Generic Features 105

www.manaraa.com

(f) Generate the 3D cell to the shape of the feature on the basis of cellular
topology, and insert the shape into the part by carrying out a non-regular
Boolean operation. Details for cellular topology will be described later in this
chapter. Here, the slot shape will be Boolean union with the base_block and
will result in the final part shown in Fig. 10.

The slot feature instance, in the example, can therefore be expressed as shown
in Fig. 11. Note that upon cellular decomposition, there are two cells (3D cells) in
the cellular model of the part shown in Fig. 10. The shaded cell represents a cell of
slot shape, while the remainder represents the cell of the base_block.

4.2 Manufacturing Feature Representation

4.2.1 Manufacturing Feature Representation Schema

A manufacturing feature represents a geometric shape that is associated with a
manufacturing process to produce the associated part faces as designed. STEP AP
224 [9] has categorized manufacturing features into three groups: machining
features, replicate features, and transition features.

Slot feature
Attribute:
Name: slot1;
ID: ENTITY*;
Domain: design;
Nature: negative;
Owner ID: ENTITY*;
Depend_feature_ID:ENTITY*;
Feature_element_list: a list of feature labels
Parameter list:
Profile: ENTITY*;
Path: direction (0,-1,0);
Slot_end_type: ENTITY*;
Position: derived by constraints;
Depth: = 15;
Width: derived from width of profile;
length: derived from distance between
hole_start and hole_end;
...
Constraint list:
Constraint_ID: ENTITY * (C0);
Constraint_ID: ENTITY* (C1);
Constraint_ID: ENTITY*(C2);
Member functions:
Attribute acess: getAttribute(),setAttribute()...
Modeling operation:
create_slot(), splitOwner(), mergeOwner()...
Feature validation:
geometryValidation(), constraintSolving(),...
Save and restore:
Save(),
Restore()

Block feature
ID:ENTITY*
...
Functions:
...

Coplanar constraint:
Attribute:
Owner_ID: ENTITY*;
Constraint_ID:
C0;
Constraint_expression:
slot_start=block_front;
Constraint_strength: int;
Constraint_sense: string;
Constrained_entity:
ENTITY_LIST;
Reference_entity_list:
ENTITY_LIST;
Other attribute:
...
Member function:
getAttribute();
setAttribute();
solveConstraint();
Other function:
...

Profile
ID:ENTITY*
Parameters:
First angle = 90;
Second angle= 90;
First radius = 0;
second radius =0;
Width = 30;

...
Functions:
create profile();

Open_slot_end_type
ID:ENTITY*
...
Functions:
create SlotEndType();
...

Coplanar constraint:
Attribute:
Owner_ID: ENTITY*;
Constraint_ID:
C1;
...

Coplanar constraint:
Attribute:
Owner_ID: ENTITY*;
Constraint_ID:
C2;
...

Cell
ID:ENTITY*
...
Functions:
...

Fig. 11 Slot, a sub-class of design geometry feature

106 S.-H. Tang et al.

www.manaraa.com

A machining feature is a subtype of manufacturing feature that is formed by
removing solid materials from the initial stock in order to obtain the target part
geometry. According to STEP, machining features can have the following sub-
types: knurl, multi_axis_feature, thread, marking, spherical_cap, outer_round,
revolved_feature, and compound_feature. For details of the definition of the
above-mentioned feature types, please refer to the standard [9].

Each machining feature requires direction and position to place it on a part.
Therefore, a placement data structure is defined. Placement specifies the position
and orientation of a machining feature relative to the base shape of a part. The data
associated with a machining feature also includes the attribute usage_name. The
usage_name specifies a user-defined name that contains additional information
about the use of a feature. The usage_name is optional; it does not need to be
specified for every machining feature.

A compound_feature unites one or more machining feature objects to create a
more complex feature definition. The placement of a compound_feature is relative
to the part, another compound_feature, or a replicate_feature which uses a com-
pound_feature as the base feature. Features that are elements of the com-
pound_feature have their placement defined relative to the compound_feature
placement.

A multi_axis_feature usually identifies milling features for a part, such as boss,
general_removal_volume, hole, rounded_end, planar_face, pocket, profile_fea-
ture, protrusion, rib_top, slot, and step.

In the authors’ view, manufacturing features, unlike design features, depend on
the process plan, although manufacturing features can have predefined geometry.
This means the geometry of a manufacturing feature can be determined only after
a manufacturing operation has been determined by the process planner. In order to
generate a manufacturing feature model from the part model, a predefined generic
feature template library can be used for feature recognition. This procedure can be
implemented automatically or interactively, or as a combination of the two. After
feature recognition) and selection of appropriate machining operations, the shape
of the manufacturing feature can be determined. Each manufacturing feature has
an associated machining_operation, defined and stored as the attributes of the
relevant geometrical entities. Candidate machining operations are those combi-
nations of the machine tool and the cutting tool whose capabilities (shape, size,
tolerance, surface finish) and accessibility satisfy the required manufacturing
specifications. Therefore, the machining operation schema has four major com-
ponents: machining method, machine tool, cutting tool, and machining operation.

The shape of a machining feature contains two volumes: an accessing volume
and a removal volume [19]. In a traditional machining operation, material is
removed by a moving cutting tool, which is attached to the machine tool. The
moving cutting tool together with its chuck, which is driven by the machine tool,
will sweep a volume in space. The cutting portion of this swept volume is known
as the removal volume, i.e., the effective removal volume. The remainder of the
swept volume is referred to as the accessing volume.

Fundamental Concepts of Generic Features 107

www.manaraa.com

4.2.2 Example of a Machining Feature Definition: Slot

A machining feature slot can be represented in schema format as shown in Fig. 12.

Generic Shape of the Machining Feature Slot

The machining feature slot can be used to achieve many kinds of design features.
When a design feature is achieved by applying a slot manufacturing feature, they
become associated; note, however, that they are neither identical nor overlapping.
There are two key differences between design features and manufacturing features.
The first is that in the manufacturing domain, accessing volumes and raw work
piece volume should also be considered for manufacturability analysis. These
volumes are evaluated when a machining operation is decided upon. The other
difference is the associated relationship between the removal volume and the design
feature. The design feature represents the design requirements, while the removal
volume represents machining steps. The removal volumes of a machining feature
are the chunks of material must be machined away with each machining steps in
order to achieve the ideal design features. Unfortunately, machining features and
design features are not corresponded in a one-to-one manner; rather, they are
associated by the critical faces which are defined by the both types of features.

Slot

Generic feature

#, #,
Numeric_parameter

#, #,
Numeric_parameter

#, #,
Descriptive_parameter

feature_name feature_id

depended_feature_id

constraint L[0:?]

Domain Nature

domain_specification feature_nature

#, #, Label

feature_label L[1:?] element L[0:?] Feature_shape_schema

Generic_constraint_schema

feature_type

#, #,
Descriptive_parameter

#, #,
Descriptive_parameter

manufacturing subtractive

#, #,
Descriptive_parameter

Manufacturing_feature

Machining_feature

Multi_axis_feature

Generic_slot_shape_schema Machining_operation_schema

Fig. 12 Machining feature slot definition in EXPRESS-G (adopted from Ma et al. [12])

108 S.-H. Tang et al.

www.manaraa.com

Design features specify the resulting requirement about critical faces while
machining features define the steps, or how those critical faces are produced.

Validity Condition Definition

• The surface type of the slot feature must match the surface type of at least one
machining operation in a given manufacturing environment.

• Tolerance and surface finish specifications of the slot feature surface must match the
tolerance/surface finish capability of at least one set of machining operations in a
given manufacturing environment. It should be noted that a feature machining pro-
cess is usually an ordered set of machining operations, whose total effects are equal to
or better than the tolerance/surface finish specifications of the finished surface.

• The effective removal volume of the slot machining feature cannot intersect
with the final design part volume.

• The accessing volume of the slot shape must not intersect with the blank or work
piece, fixtures, or other machine tool elements at any time.

• When machining the slot with an end-milling tool, the minimum corner radius
of the slot must not be smaller than the radius of the selected milling tool.

Other Feature Properties

• Feature name: slot
• Depended_feature_id: entity_list
• Domain: manufacturing
• Nature: negative.

Instantiating a slot feature in the manufacturing domain often requires automatic
or interactive feature recognition with the input of users. Automatic feature rec-
ognition is very complicated and is an entire research area unto itself; here, due to
space limitations, it will not be discussed. The corresponding features in different
domains are associated with the final product model. Given the design feature slot
shown in Fig. 10, the corresponding machining slot feature as defined in Fig. 12
can be automatically identified. Note that the example contains two features rep-
resented as 3D cells, namely, the slot and the base_block (workpiece). The detailed
properties of a manufacturing feature slot instance are shown in Fig. 13.

5 Operation for Multi-Application Interoperability

Owing to the large sizes of CAD files, data transmission among various CAx appli-
cations over the Internet is quite time-consuming and unreliable, causing intolerable
wait times when updating large CAD models across networks. To reduce the network
load, an appropriate way to represent CAD data is needed. Incremental transfer is one

Fundamental Concepts of Generic Features 109

www.manaraa.com

way to do this. Only the modifications, instead of the whole CAD model, are
transferred incrementally during the design process. In this method, an operation is
used to incrementally transfer model modifications to reduce the communication load.

Operation is defined as a set of related commands that are responsible for func-
tional manipulation of entities. It is directly used to support the interface of the CAx
system. As categorized by Chen et al. [6], operations have two types: geometry- and
non-geometry-related operations. An operation can be represented using a schema
such as the one shown in Fig. 14. The geometry-related operations can be further
classified into feature-related and low-level operations according to the entities that
they manipulate. Low-level operations create or modify low-level entities, such as
points, lines, and faces. Feature-related operations (feature operations) include
instantiating a feature or modifying a feature. Non-geometry-related operations can
be divided into ‘‘auxiliary’’ and ‘‘additional’’ operations. ‘‘Auxiliary’’ operations
mainly facilitate geometric modeling but do not affect the geometry, such as layer
management and view manipulation. Other non-geometric operations can be clas-
sified into an ‘‘additional’’ group, such as those related to file management. Sup-
porting operations are a basic requirement for generic feature definition; it is
important for the manipulation of the feature model, especially for distributed

Slot feature
Attribute:
Name: slot1;
ID: ENTITY*;
Domain: manufacturing;
Nature: negative;
Owner ID: ENTITY*;
Depend_feature_ID:ENTITY*;
Feature_element list: a list of feature lables
Parameter list :
Length: fixed value;
Profile: ENTITY*;
Path: direction (0,-1,0);
Slot_end_type: open_slot_end_type;
Width: fixed value;
Position: derived by constraints;
Depth: fixed value;
...
Machining_operation:
machining_operation_ID: ENTITY*;

Member functions:
Attribute acess: getAttribute(),setAttribute()...
Modeling operation:
create_slot(), splitOwner(), mergeOwner()...
Feature validation:
geometryValidation(), constraintSolving(),...
Save and restore:
Save(),
Restore()
...

Block feature
ID:ENTITY*
...
Functions:
...

Cutting_tool
Attribute:
Cutting_tool_ID: ENTITY*;
Cutting_tool_name: string;
Cutting_tool_type: string;
Other attribute:
...
Member function:
getAttribute();
setAttribute();
solveConstraint();
Other function:
...

Machine_tool
Attribute:
Machine_tool_ID: ENTITY*;
Machine_tool_name: string;
Power_constraint: real;
Working_accuracy: real;
Working_area_constraint_xyz:
real;
...

Machining_operation
Attribute:
Operation_ID: ENTITY*;
Operation_name: string;
Tolerance_grade: int;
Machine_tool:
Machine_tool_ID: ENTITY*;
Cutting_tool:
Cutting_tool_ID: ENTITY*;
Removal_profile: ENTITY*;
accessibility_profile:
ENTITY*;
Tool_path: ENTITY*;
Removal_volume:
ENTITY_list (list of cells);
Accessibility_volume:
ENTITY_list (list of cells);
...
Member function:
getAttribute ();
setAttribute ();
solveConstraint ();
Other function:
...

Cell
ID:ENTITY*
...
Functions:
...

Milling_cutter
Attribute:
Cutter_ID: ENTITY*;
Cutter_diameter: real;
Other attribute:
...
Member function:
getAttribute();
setAttribute();
solveConstraint();
Other function:
...

Fig. 13 Sub-class definition of a machining slot feature

110 S.-H. Tang et al.

www.manaraa.com

collaboration over the web [30], because the communication data loads between
distributed clients and database servers can be maximally reduced by using operation
command-based messages.

An operation entity has a name and an ID. An attribute named time_stamp is
used to record the time sequence during a collaboration session. An operation
records the entities to be created or modified in an operation_entity_list. In the
referenced_entity_list, entities that are related to a particular operation are recor-
ded. For example, when an operation that reconstrains a feature with reference to
an element of another feature is sent, the old and new constrained_entities and
referenced_entities are recorded in the referenced_entity_list such that the appli-
cation, which receives this operation, can easily match the corresponding entities
in its application. Such matched entities in the receiving application are recorded
in the target_entity_list, which is used for model updates according to the oper-
ation. An operation_rational specifies what kind of action the operation will do to
the operation entity, e.g., for a feature-related operation, operation_rational
specifies the actions such as add, delete, or modify.

6 ACIS Cellular Geometrical Representation Schema:
Multi-Application Geometry Interoperability Model

A unified feature model allows different applications to define features in different
ways, but they are associated with the same master product model. As reviewed in
‘‘A Review of Data Representation of Product and Process Models’’, explicitly

(ABS)Operation
#, #,

Descriptive_parameter
#, #,

Numeric_parameter

name

#, #, Descriptive_parameter

#, #, Numeric_parameter
time_stamp

operation_rational

ID

(ABS)Geometry_related
_operation

(ABS)Non_geometry_operation

general_feature_schema.
model.element

general_feature_schema.
model.element

referenced_entity_id L[0:?]

target_entity_id L[0:?]

general_feature_schema.
model.element

operation_entity L[0:?]

(ABS)Feature_related
_operation

(ABS)Low_level
_operation

(ABS)Additional
_operation

(ABS)Auxiliary
_operation

Fig. 14 Operation representation schema

Fundamental Concepts of Generic Features 111

http://dx.doi.org/10.1007/978-1-4471-5073-2_2

www.manaraa.com

maintaining feature shapes in the product model has many advantages. In this
research, the feature-oriented product structure generation is modeled in a neutral
format, which is designed to be an extension of ACIS [1]. A cellular topology-
based geometrical representation schema is adopted as the basic multi-application
oriented geometry model.

The cellular model represents a part as a connected set of volumetric quasi-
disjoint cells [1]. By cellular decomposition of space, cells are never volumetri-
cally overlapped. As each cell lies either entirely inside or outside a shaped cell, a
feature shape can be represented explicitly as one cell or a set of related cells in the
part.

The special characteristics of cellular topology require a special Boolean
operation. This is also directly supported by the geometric modeling kernel ACIS.
ACIS allows the use of non-regularized Boolean operations. This is generally
implemented by specifying a special argument to a Boolean function. In ACIS, the
API function outcome api_boolean has an optional argument Bool_type to specify
the type of the Boolean operation, which can be Union, Intersection, Subtraction,
Nonreg_union, Nonreg_intersection, or Nonreg_subtraction.

Specifying a non-regularized Boolean type essentially adds three new condi-
tions to the Boolean operations:

1. When single_sided faces become double_sided, both_inside faces, they remain
in the resulting body.

2. Any face-face coincident region remains in the resulting body.
3. No edge or vertex merging is performed at the end of the Boolean.

Owing to the first condition, the union operation always keeps all face regions
from the two bodies (though it may split them into separate faces). Owing to the
second condition, the intersection of two blocks that share a coincident face always
leaves the face instead of deleting it. Owing to the third condition, subtracting a
sheet from a non-coincident sheet leaves the imprint of the subtracted sheet on the
other sheet [1].

The cellular model-based geometrical representation schemas adopted in the
authors’ research are further discussed in ‘‘Unified Feature Paradigm’’. Since the
data structure of feature entities is neutral, in order to support different feature
definitions used by different applications, application-specific feature schemas
need to be mapped onto a set of common schemas. As a default implementation
solution, the common feature schemas are interfaced with the ACIS cellular
model, as currently, only ACIS supports cellular geometrical models. ACIS pro-
vides an intermediate data format, which is used for information integration from
the application angle. Theoretically, any other solid modeler supporting a neutral
format can be adopted as long as it supports multiple application views in a
consistent manner. This has also been addressed by other researchers such as
Owen [15] and Rappoport [17, 18]. In addition, ACIS also provides lower-level
geometric modeling functions, which can greatly reduce development efforts. At
this stage, we believe that it is feasible to evaluate features via a single solid
modeler with a neutral format.

112 S.-H. Tang et al.

http://dx.doi.org/10.1007/978-1-4471-5073-2_5

www.manaraa.com

Collaboration with other feature-based systems requires translators, which are
used to translate both feature-level and geometrical data between proprietary
application formats and the neutral intermediate format. The adoption of ACIS
does not affect our investigation of feature-level association and sharing among
different applications based on a common database structure [14, 16].

Regarding pure geometry data, similar research has been done. Kim and Han
[11] describe an interface (OpenDIS) between the geometric modeling kernel and
the database management system (DBMS) for the implementation of a CAD
system that uses the STEP database as the native storage [11, 27]. A prototype
system was developed using OpenCascade geometric modeling kernel and Ob-
jectStore. Bidarra’s team also uses OpenCascade and its geometric modeling
kernel for information integration purposes [3].

A commercial system, OneSpace by Cocreate [8], allows multiple-system
input, and uses SolidDesigner as its modeling engine to support collaborative
product design, but the system is not feature-based. Feature-level information-
sharing has not been reported thus far in the literature.

7 Summary

In this chapter, a conceptual information infrastructure has been proposed to
integrate product information in EPM and support multi-view applications with its
underlying sub-models. To this end, a generic feature representation schema has
been presented, which includes feature shape representation and constraint rep-
resentation. The generic feature model provides a template for different application
feature definitions. In order to maintain feature relationships, a depended_fea-
ture_id_list, used to maintain feature dependency relations, has been defined; this
is to be further addressed in ‘‘Unified Feature Paradigm’’. In addition, feature
labels have been defined to record feature elements and support history-indepen-
dent model re-evaluation. On the basis of the generic feature model and STEP AP
224, design feature and manufacturing feature models have been described.
Examples (design slot feature and manufacturing slot feature) were given to
illustrate how a specific feature type can be defined. In order to effectively com-
municate between distributed clients and geometry management servers with
centralized databases during a collaboration session, an operation schema has been
developed. Finally, a detailed geometrical representation schema was investigated
based on cellular topology.

Acknowledgments The authors would like to acknowledge that the following research grants
have supported the presented work: The Natural Science Foundation of Guangdong Province,
China (Grant No. 10451009001004484), Canada Natural Sciences and Engineering Research
Council of Canada (NSERC) discovery grant (No. 355454-09), and the University of Alberta
GRF (G121140079) grant.

Fundamental Concepts of Generic Features 113

http://dx.doi.org/10.1007/978-1-4471-5073-2_5

www.manaraa.com

References

1. 3D ACIS Modeling (2012). http://www.spatial.com/products/3d-acis-modeling. Accessed 25
Oct 2012

2. Bettig B, Shah JJ (2001) Derivation of a standard set of geometric constraints for parametric
modeling and data exchange. Comput Aided Des 33:17–33

3. Bidarra R, de Kraker KJ, Bronsvoort WF (1998) Representation and management of feature
information in a cellular model. Comput Aided Des 30:301–313

4. Chen G, Ma YS, Thimm G, Tang SH (2004) Unified feature modeling scheme for the
integration of CAD and CAx. Comput Aided Des Appl 1:595–602

5. Chen G, Ma YS, Thimm G, Tang SH (2006) Associations in a unified feature modeling
scheme. ASME Trans J Comput Inform Sci Eng 6:114–126

6. Chen JY, Ma YS, Wang CL, Au CK (2005) Collaborative design environment with multiple
CAD systems. Comput Aided Des Appl 2:367–376

7. Dohmen M (1998) Constraint-based feature validation. PhD thesis, Delft University of
Technology, Netherlands

8. Emmel J (2000) OneSpace integrating collaboration technology and enterprise PDM. Tech
Whitepaper of CoCreate Software GambH

9. Industrial Automation Systems and Integration (2000) Product data representation and
exchange, Part 224: Mechanical product definition for process planning using machining
features. ISO Document ISO TC 184/SC4/WG3 N854

10. Juri AH, Saia A, De Pennington A (1990) Reasoning about machining operations using
feature-based models. Int J Prod Res 28:153–171

11. Kim J, Han S (2003) Encapsulation of geometric functions for ship structural CAD using a
STEP database as native storage. Comput Aided Des 35:1161–1170

12. Ma YS, Tang SH, Chen G (2007) A fine-grain and feature-oriented product database for
collaborative engineering. In: Li WD, Ong SK, Nee AYC, McMahon CA (eds) Collaborative
product design and manufacturing methodologies and applications. Springer, England

13. Ma YS, Chen G, Thimm G (2009) Fine grain feature associations in collaborative design and
manufacturing—a new modeling approach. In: Wang LH, Nee AYC (eds) Collaborative
design and planning for digital manufacturing. Springer, London

14. Mittra SS (1991) Principles of relational database systems. Prentice Hall, Englewood Cliffs
15. Owen J (1993) STEP: an introduction. Information Geometers, Winchester
16. Ramakrishnan R, Gehrke J (2000) Database management systems. McGraw-Hill, Boston
17. Rappoport A (2003) An architecture for universal CAD data exchange Proceedings of Solid

Modeling’ 03, ACM Press, New York
18. Rappoport A, Steven S, Michal E (2005) One-dimensional selections for feature-based data

exchange. Proceedings of Solid Modeling’05. Massachusetts Institute of Technology
19. Regli WC, Gupta SK, Nau DS (1994) Extracting alternative machining features: an

algorithmic approach. Tech Rep 94–95, The University of Maryland, Institute for Systems
Research, College Park, MD, USA

20. Rossignac JR (1990) Issues on feature-based editing and interrogation of solid models.
Comput Graph 14:149–172

21. Sannella M (1993a) The SkyBlue constraint solver. Tech Rep 92-07-02, Department of
Computer Science and Engineering, University of Washington

22. Sannella M (1993b) The SkyBlue constraint solver and its applications. First Workshop on
Principles and Practice of Constraint Programming

23. SCRA (2006) STEP Application Handbook ISO 10303 Version 3. http://www.uspro.org/
documents/STEP_application_hdbk_63006_BF.pdf. Accessed 25 Oct 2012

24. Shah JJ (1991) Assessment of features technology. Comput Aided Des 23:331–343
25. Shah JJ, Rogers MT (1988) Feature based modelling shell: design and implementation. In:

Proceedings of ASME computers in engineering conference. San Francisco, USA

114 S.-H. Tang et al.

http://www.spatial.com/products/3d-acis-modeling
http://www.uspro.org/documents/STEP_application_hdbk_63006_BF.pdf
http://www.uspro.org/documents/STEP_application_hdbk_63006_BF.pdf

www.manaraa.com

26. Sheu LC, Lin JT (1993) Representation scheme for defining and operating form features.
Comput Aided Des 25:333–347

27. Shin Y, Han SH, Bae DH (2000) Integration of homogeneous CAD databases using STEP
and internet. Decis Support Syst 28:365–379

28. Tang SH (2006) The investigation for a feature-oriented product database. PhD Thesis,
Nanyang Technological University, Singapore

29. Tang SH, Ma YS, Chen G (2004) A feature-oriented database framework for web-based CAx
applications. Comput Aided Des Appl 1:117–125

30. Tang SH, Ma YS, Chen G (2004b) A web-based collaborative feature modeling system
framework. In: Proceedings of the 34th International MATADOR Conference

31. Zha XF, Du H (2002) A PDES/STEP-based model and system for concurrent integrated
design and assembly planning. Comput Aided Des 34:1087–1110

Fundamental Concepts of Generic Features 115

www.manaraa.com

Unified Feature Paradigm

Zhengrong Cheng, S.-H. Tang, Gang Chen and Y.-S. Ma

1 An Overview of Feature Modeling Methods and Trends

Product development consists of several lifecycle stages, including conceptual
design, detailed design, process planning, machining, assembly, and so on. Con-
current engineering, a method based on the parallelization of tasks, takes into
account of the whole lifecycle of the product, in order to reduce the time needed to
develop a new product at the early design stage and quickly stabilize production to
better reflect changes in market demand during the product lifecycle. Collaborative
engineering, an extension of concurrent engineering, is a technological approach
that supports distributed, multi-disciplinary, and multi-organizational teams during
the product development and manufacturing processes [33]. The effective adoption
of concurrent engineering and collaborative engineering requires a high level of
integration both among engineering domains and between company departments,
such as business and engineering [15]. Within the engineering domains, more
research is needed regarding the efficacy of data sharing and the associated control
processes related to the product model changes according to complex engineering
knowledge. Regarding the business management aspect, mass customization effort
(which is usually in the form of dynamic company responses to customer

Z. Cheng � Y.-S. Ma (&)
University of Alberta, Edmonton, AB T6G 2G8, Canada
e-mail: yongsheng.ma@ualberta.ca

Z. Cheng
e-mail: zcheng3@ualberta.ca

S.-H. Tang
Guangdong University of Technology, Guangzhou, People’s Republic of China
e-mail: fwei@scut.edu.cn

G. Chen
Tianjing University of Science and Technology, Tianjin, People’s Republic of China
e-mail: chengang@tust.edu.cn

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_5, � Springer-Verlag London 2013

117

www.manaraa.com

requirements) would identify what specific functions of the product need to be
delivered and/or prioritized during the tailored conceptual design stage [30, 31].

In concurrent and collaborative engineering, multiple computer-aided tools are
utilized to support diverse activities throughout the product lifecycle, aiming to
achieve a reduction in product development time as well as better quality results.
Feature technology has played a vital role in the practice. This chapter begins with
a discussion of the limitations of current feature-based modeling systems,
including the loss of engineering intent, ‘‘hard-coded’’ feature semantics, unsat-
isfactory compatibility, inconsistency, and limited scalability for information
transfer and sharing among different CAx systems [15]. Such limitations cause the
chaos during engineering change propagation within and across different product
development stages. The authors proposes a unified feature system which is
expected to provide the required scalability and flexibility. The validity of the
unified feature modeling scheme in satisfying the demands of modern concurrent
and collaborative engineering is further confirmed in the subsequent sections.

2 Informatics Challenges for Modern Concurrent
and Collaborative Engineering

It is widely acknowledged that feature modeling, unlike traditional geometric
modeling, triumphs in its capability to associate shape information with functional
and engineering information in a product model. This advantage leads to the wide
use of features for modeling products [2, 17, 47]. However, new system integration
needs have emerged that make the traditional feature technology no longer
satisfactory.

In modern concurrent and collaborative engineering environments, it is com-
mon that engineers are geographically distributed while working on the same
engineering task [9]. Thus, the lack of high interoperability, resulting from the fact
that engineers are using different modeling systems with different ways of repre-
senting products [13], hinders the speed of product development and engineering
processes [6, 27, 52]. Moreover, even within a single modeling system, the poorly
defined feature semantics are still a problem; for example, current feature-based
modeling systems typically define the geometric features only and leave the non-
geometric features largely undefined, which limits the capability of capturing
design intent in the model. Further, the semantics are not maintained consistently
and coherently, which causes the previous design intent to be unusable and have to
be overruled [2, 22, 34]. In addition, the associations between feature attributes
and constraints among different stages of product development, such as conceptual
design, detailed design, assembly design, and process planning, are neither well
modeled nor maintained, be they geometric or non-geometric, which makes the
design change propagation tremendously difficult across product development;
this, in turn, impairs the integrity and consistency of the product model [12]. For

118 Z. Cheng et al.

www.manaraa.com

instance, CAE models are usually derived and simplified from the CAD model; the
disadvantage of this approach is that constructing CAE models has to be repeated
every time changes are made in the design model [49]. In addition, inter-stages
data transfer and sharing are not well supported too. This is illustrated by the fact
that until now, modeling systems have been either primarily part-oriented or
primarily assembly-oriented [41]. Clearly, the current CAx technology fails to
consider full product lifecycle, especially for, the conceptual design stage, due
to the lack of well-defined features that are self-contained and flexible enough to
facilitate communication among different stages.

3 Basic Requirements for a Unified Platform
of Engineering Information Systems

The proposed unified feature modeling system is based on the generic feature
concept; its definition, and implementation scheme have been presented in
‘‘Fundamental Concepts of Generic Features’’. As a foundation class, generic
feature is supposed to represent the common properties and methods of different
features throughout the product lifecycle and encapsulate geometric and non-
geometric relations generically [33, 34].

As Sec. 2 discussion indicates, considering the requirements of modern con-
current and collaborative engineering, feature-based systems should be reinvented.
Ideally, the new paradigm would fulfill the integration of CAx systems with a
generic feature semantic definition scheme. Figure 1 shows the proposed unified
engineering information system infrastructure concept. This infrastructure model
is expected to better convey engineering intent, facilitate data transfer and sharing,
and to support both the well-modeled geometric and non-geometric associations
across different stages of the product lifecycle. This approach will allow the
process of engineering change propagation to be systematically managed.

As shown in Fig. 1, the unified feature modeling architecture uses a four-layer
structure. The top layer is the application model layer, which consists of different
functional application models, such as conceptual design, detailed design, CAE,
process planning, etc.

The second layer is the information layer, which can be further decomposed
into four sub-layers. The first sub-layer is the macro EXPRESS-based semantic
specification layer. This layer keeps a semantic consistency management module
and provides system level data structure definitions; it is like a set of header files in
C/C++ programming. Second, the application feature sub-layer offers services
specifically required for each application with tailored extension of feature mod-
eling support. All application-specific feature definitions with their necessary
member functions (which are usually specialization classes of the lower-level
generic features) are implemented [35]. Third, a unified feature sub-layer sys-
tematically deals with the geometry, topology, dimensions, tolerances, constraints,

Unified Feature Paradigm 119

http://dx.doi.org/10.1007/978-1-4471-5073-2_4
http://dx.doi.org/10.1007/978-1-4471-5073-2_2

www.manaraa.com

and parameters as its attributes via generic features as discussed in ‘‘Fundamental
Concepts of Generic Features’’. The unified feature model materializes generic
features whose properties and methods interface with the fourth sub-layer, entire
product model (EPM). By using generic feature as the basic and common type of
feature semantic modeling, high-level semantic attributes and constraints [25] are
associated with geometric and topologic entities managed by a geometry modeling
kernel via the predefined geometry referencing mechanism. This mechanism can
be implemented by kernel level services for connecting higher-level feature
specifications with EPM entities to solve persistent problems, such as creating,
registering, naming, indexing, inquiring, editing, consistency checking, etc. The
unified feature model also contains the domain classification ontology and meta-
data. It manages product-, assembly-, and part-related information and inter-
application feature models, respectively.

The third layer of Fig. 1 is the data structure representation layer. In this level,
all the feature-related data structures are mapped into database-oriented schemas,
where the physical database repository system [54] is formulated and interfaced.

The bottom layer is the database management, which is the platform infra-
structure technology to be adopted. The database in the physical layer provides
repository for many kinds of information, such as geometrical data, feature
information, and others [54]. Feature information is stored as data records across
database tables. Database structures make information sharing natural, flexible,
and with levels of granularity. Currently, the authors can envision the use of
massive collaborative database solutions supported by cloud computing or other

Database
schema

Sub-model 3

Programming
language

Neutral
format

Application
layer

Information
layer

Sub-model 2Sub-model 1

Representation
layer

Database Physical layer

Entire product model

EXPRESS specification

Unified feature model

Application feature model

Fig. 1 A four-layer unified feature information modeling infrastructure [51]

120 Z. Cheng et al.

http://dx.doi.org/10.1007/978-1-4471-5073-2_4
http://dx.doi.org/10.1007/978-1-4471-5073-2_4

www.manaraa.com

well-known commercial packages such as Oracle [51]; however, database support
is not the focus of this research work.

3.1 Introduction of Unified Feature Modeling Scheme

As a continuation of associative feature modeling theory [31, 34], feature unifi-
cation was proposed to provide a generic definition to represent common char-
acteristics and methods for various application features. A unified feature
modeling scheme, which aims at a systematic informatics engineering framework,
was originally proposed by the authors [7, 8, 50]. By using a generic feature
template, their unified feature modeling scheme was intended to provide a
framework for different engineering application feature models. Although engi-
neering applications define features in different ways, their features have the
common types of data entities, such as geometry, topology, dimensions, toler-
ances, constraints, and parameters. Furthermore, different application features
refer to the same master product geometry. These commonalities provided the
framework for the research team to propose the unified feature model [8].

Ideally, high-level feature objects are organized by different sub-models in the
application feature layer. Application feature sub-models are used to define spe-
cific views for different applications. In Tang’s work [50], the EPM, application
feature model, and unified feature model were described in EXPRESS language.
For future implementation, such EXPRESS-defined information models need to be
mapped onto database schema (for data storage), expressed in a programming
language (workform format), and represented in a neutral data format for data
communication.

In Tang’s scheme [50], features were modeled as an intermediate information
layer for the propagation of modifications and to maintain information associations
and consistency. To identify and extract the common characteristics of different
application features and achieve the required reusability in the feature modeling
system, the generic feature concept was used as the basic type of information grain
elements, which was expected to be a highly abstracted class in object-oriented
programming terminology. As can be seen in Fig. 2 [9], the unified feature model
was suggested as the parent class of the multiple application feature models.
Concept design and detail design are two example child feature models. From
concept feature model (CDFM) to detail feature model (DDFM), a series of
refinements is necessary which can be managed by a refine functional module. For
feature transformation from detail design DDFM to CAE analysis (ASFM), a
simplification process is involved; therefore, the simplify module is necessary to
be implemented.

All these feature models use the geometry model (GeoM) for entity creation,
editing, data references, and constraint evaluation [25]. The intricate relationships
among the features of the whole unified feature model are managed by the relation
model. It was the authors’ vision that such a hierarchical feature type abstracting

Unified Feature Paradigm 121

www.manaraa.com

scheme could support a polymorphic definition of features under the umbrella of
object-oriented philosophy such that systematic processing methods—including,
but not limited to, repository services, validating checking routines, and change
propagation—could be shared and automated [33, 34]. The graphical block dia-
gram shown in Fig. 2 follows the UML data representation convention [14]. The
member feature of each application feature model can be built from the generic
feature class.

3.2 Expected Capability of Unified Feature System

Ideally, the unified feature system that is defined in a flexible and consistent
manner should have the following components to support modern concurrent and
collaborative engineering:

• Integration of different stages of the product lifecycle among multiple CAx
systems with high data interoperability [8, 15];

• Geometric and non-geometric association modeling via generic features [10];
• Capture of engineering intent [9];
• Smooth modification propagation with highly maintained information consis-

tency and integrity [11, 33]; and
• Scalability of representing diverse product characteristic engineering patterns.

4 Unified Feature Paradigm

A unified feature system framework consists of an embedded expert system, a
unified cellular model (UCM), and an association and change propagation
mechanism. Feature, as an intermediate information layer, must interface upward
to the knowledge base and downward to the GeoM. In the object-oriented
approach, feature is modeled as classes [13], consisting of four types of member
variables (geometric entities, Attributes, constraints, and parameters), which
embody the ‘‘what’’ part of the feature, and a set of member functions (such as

Fig. 2 Unified feature
model [9], GeoM geometry
model, CDFM conceptual
design feature model, DDFM
detail design feature model,
ASFM analysis feature model,
APFM assembly planning
feature model, and MPFM
machining planning feature

122 Z. Cheng et al.

www.manaraa.com

geometry-creation, query, validity-check, etc.), which represent ‘‘how’’ the feature
works, namely the processes a feature is capable of carrying out [10]. This process
is illustrated in Fig. 3.

The next section introduces the UCM, knowledge reasoning process, and
association and changes propagation mechanism in the unified feature system.

4.1 Unified Cellular Modeling Process

The development of this unified cellular modeling method is intended to achieve
the capability of cross-referencing the cellular models among different application
features which are defined separately in their application schemes. This mecha-
nism is necessary to achieve useful information sharing across different applica-
tions which commonly refer to the same master product model in both semantic
and geometric levels. Regarding the geometry aspect, cross-referencing means the
core GeoM must be able to deal with multiple representations of associative
features with mutual associations automatically. The proposed unified cellular
modeling method is based on non-manifold boundary representation; relations
between the feature and its corresponding topological entities can be modeled in a
complete and comprehensive way (see Fig. 4).

According to Chen et al. [12], the UCM must support the following
mechanisms:

• Boolean attribute mechanism. Two different Attributes are defined in a cellular
model: cellular nature is either additive or negative, depending on whether it
adds or subtracts material to a form feature.

Fig. 3 Structure of a three-part product information model [10]

Unified Feature Paradigm 123

www.manaraa.com

• Owner recognition and management. Owner keeps track of the shape elements
that the cell belongs to. The owner list, as well as the sequence of cells in the
owner list, should be maintained according to each application scenario.

• Decomposition mechanism. No cells should ever be volumetrically overlapped.
When this is the case, a different cell should be created to represent the over-
lapping part of the shape, as well as the parts lying in either of the shapes.

• Topology construction mechanism. New topologies of faces, edges, and vertices
are generated before classifying the topological entities as in, out, or on the
boundary when cell operations are carried out.

The cell is a data type defined in the cellular model, which represents every
element in the set of all the shape entities of the geometrical model throughout the
product development process [4]. The UCM is capable of integrating different
aspects or abstraction levels of a product in different stages of product develop-
ment; for example, abstracted lines, faces, curves, or surfaces in the conceptual
design, two-manifold solid model in the detailed design, or solid representation
with surface manipulation support in the process planning stages. The unified
feature model is the parent class of each specific application feature, the relations
among which can be seen in Fig. 5.

A few remarks can serve as highlights for the proposed scheme. An application
feature model (AFM) contains application features (AF) and non-geometric enti-
ties (NGE). An application cellular model (ACM) is created at runtime and con-
sists of multiple application cells. A set of unified cells (UC) makes up the unified
cellular model , which is mapped to the components of an application model, and
might be shared among different applications. Interested readers can refer to the
original sources [3, 12] for more details. The working mechanism of the UCM
provides a good basis for accommodating different geometry representation
requirements for different application modules.

Fig. 4 Feature model, cellular model, and non-manifold boundary representation [12]

124 Z. Cheng et al.

www.manaraa.com

4.2 Knowledge-Based Reasoning

Engineering knowledge is represented in the form of ‘‘if… then…’’ rules in the
knowledge base [43]. The alignment between the knowledge base and the feature
models, knowledge-based constraint-driven product modeling, knowledge updat-
ing, and extraction throughout the unified feature modeling are the unalienable
parts in the unified feature system framework.

As has been discussed above, a feature class consists of four types of member
variables (geometric entities, attributes, constraints, and parameters) and a set of
member functions (such as geometry-creation, query, validity-check, etc.), from
which attributes and constraints, together with parameters, comprise a feature’s
interface with the knowledge bases. Rules, facts, and actions make up the basic
information that comprises knowledge stored in the knowledge base. Rules rep-
resent the human element of engineers’ abstract reasoning patterns; facts are
represented by data on which rules can operate by reasoning; and actions are
defined operations to be carried out for reasoning which derives from the
knowledge states.

Geometric and topological descriptions of a product are, by contrast, contained
in the GeoM [10]. Feature operations [13], when they create, modify, or remove
facts, involve the functionality of the knowledge base and indirectly activate rules
[36]. The knowledge evolution process can thus be described as the sequenced sets
of the consequent facts associated with ‘‘fired’’ rules. They are transformed into
the corresponding attributes and/or constraints of feature instances, where relations
between the knowledge base and the feature model must be indexed and main-
tained consistently during the feature updating process. The same concept applies
to the intra- and inter-feature relations, as well as the relations between the GeoM
and the feature model. Consequently, such processes and procedures should be

Fig. 5 Hierarchical structure of the unified cellular model [12]

Unified Feature Paradigm 125

www.manaraa.com

well defined to support the unified feature system with the well-defined functional
operations, such as feature validity checking within the knowledge-based rea-
soning process.

A three-level relational mechanism has been proposed [10] among the
knowledge, feature, and GeoMs, as represented in Fig. 6. Briefly, the three major
classes in the knowledge model are defined: rule, action, and fact. A list of pre-
defined rule objects and existing fact objects are maintained as entities of a
knowledge model [43], which are responsible for forward-chaining reasoning,
including, but not limited to, matching rule patterns and selecting a rule to fire.
Further, dependency relations are maintained in a justification-based truth main-
tenance system (JTMS), which helps to avoid infinite processing loops in large-
scale problems by evaluating general and domain-specific validity. Detailed
implementation information can be found in the works of Forbus and de Kleer
[19], and Chen et al. [12].

4.3 Association and Change Propagation

Associations are essential in the unified feature system when evaluating and val-
idating the entities and variables to which constraints refer to, which further
validate the corresponding features and support change propagation. That is,
whenever changes are made to the shared geometric or topological entities,

Fig. 6 Partial relations between the knowledge base and the feature model [10]

126 Z. Cheng et al.

www.manaraa.com

notification and validation will be carried out on all the dependent features auto-
matically through assigning and associating a feature’s geometric reference with
the related geometric or topological pointers [11].

Maintaining the feature validity is the process of monitoring each modeling
operation to ensure that all features conform to the validity criteria specified in
their respective classes [11]. Two types of association have been introduced:
sharing and dependency. Sharing association is for common geometry-based
feature association. Dependency associations describe the geometric and
non-geometric relationships, and can be further divided into three sub-types:
(a) dependencies between the knowledge model [43] and the feature model;
(b) single-stage intra- or inter-feature dependencies; and (c) inter-feature depen-
dencies across multiple stages [11]. A JTMS is necessary for implementing the
dependency associations with a generic data structure and algorithms, which
allows it to handle geometric and non-geometric constraints uniformly [12, 19,
35]. In terms of implementing the sharing associations, two methods must be
developed with the help of the UCM discussed previously, in order to maintain
geometric consistency among lifecycle stages. One of these methods is to generate
a new application feature, and the other is to modify an application feature uni-
formly. An algorithm has been developed to support change propagation in the
unified feature system, which consists of several processes: checking the intra-
stage associations; checking the inter-stage associations; and retaining or retracting
all changes temporarily made.

A detailed feature change management procedure is described in Ma et al. [33].
With such an association scenario and change propagation algorithms built within
the unified feature system, validity and consistency of product models could be
achieved.

5 Constraint Modeling in the Unified Feature System

Constraint modeling is essential in the unified feature system [25]. This section
introduces the broader and more flexible definition of constraint in the unified
feature paradigm and its representations. Well-defined constraint, be it geometric
constraint, algebraic constraint, or rule-based constraint, can be created and
enforced when an application feature is instantiated, or dynamically created
through interactive user interfaces, such as during the design process, to achieve
the function of validating the unified feature model [25].

5.1 Constraints Definition and Representation

The scope of constraint is much wider than simply geometric in the unified feature
system. According to [23], constraints cover the following items:

Unified Feature Paradigm 127

www.manaraa.com

• Geometric relationships (concentricity, perpendicularity, parallelism, etc.) and
metric dimensional constraints (length, angle, etc.);

• Equation constraints (equal length, etc.) and/or technical variables such as
torque;

• Semantic constraints that determine the conditions in which a shape is valid or
not;

• Topological relations among entities in a model.

In a sense, those constraints mainly deal with geometric elements. However, in
the unified feature system, constraints are defined more broadly. Anything that
restricts the possibility of a given existence can be seen as a constraint. For
example, in an assembly feature, which is usually an inter-part associative feature
with a coherent definition for assembly purposes and/or overall functionalities,
different levels of constraints are involved, including:

• Engineering constraints, or the fundamental law of physics behind the
mechanical system;

• System mechanism constraints, which define the constraints within the sub-
assembly systems that make the system workable in terms of fundamental
physics principles. Such sub-assembly systems are the means to an end instead
of the end itself;

• Mechanical assembly constraints, which define the part and/or part relations
within the assembly and subassembly;

• Component constraints, which primarily address the dimensional constraints of
a specific component;

• Geometry modeling constraints, which vary with different modeling methods
(such as modeling from scratch, like line and arc, or modeling parametrically
with a feature-based technique);

• Manufacturing constraints, including geometric and dimensional tolerances.
Such constraints are fundamental for manufacturing engineers.

Such non-geometric constraints reflect essential design intent information in
conjunction with geometric constraints. After constraints are identified, the next
step is representing them. Fortunately, a variety of approaches are available for
constraint representation; these include equations/formulas, symbolic relations/
logics, optimization processes, tables, curves, dependency graphs, and references.

In the generic feature definition, constraints are modeled as a special procedural
object type with associated attributes of other diverse objects such as geometric
and NGE or features [34]. Furthermore, specialized functions should be included
in the objects to handle those procedural methods, including defining constraints,
constraints solving, and other constraints behavior control functions. For example,
because a class is defined in the object-oriented approach, data_type could be seen
as one kind of objects or a class, i.e., integer, floating point, or char.

128 Z. Cheng et al.

www.manaraa.com

5.2 Constraints in Unified Feature System

Constraints can be solved with a numerical constraints solver, a geometric con-
straints solver, or a rule-based expert system solver with the help of appropriately
defined functions of features to call on the services of these solvers. Similarly,
constraints strength, one kind of constraints behavior, should be set with the
corresponding function.

There are a variety of approaches to constraint solving, such as the graph-based
approach, the propagation approach, and evolutionary methods, among which
graph-constructive solving techniques have become dominant [1]. In this
approach, a graph should be developed first to represent the constraint problem at
hand, and then the constraint should be addressed by a searching technique.

In terms of searching strategies, exhaustive search and heuristics are applicable
according to the nature of the constraints problem at hand. Search direction and
search order also matter a great deal when choosing a search technique to solve a
specific problem. On the one hand, search order could either be data-driven, which
is called forward chaining, or goal-driven, which is called backward chaining,
depending on the properties of the problem, i.e., the ‘‘shape’’ of the state space, the
complexity of the rule, and the nature and availability of the problem data. On the
other hand, searching methods could be further categorized as depth-first, breadth-
first, or depth-first iterative for deepening the search. If the size of the search space
is overwhelming large, it would be more practical to apply heuristics, a strategy for
selectively searching a problem space. A heuristic algorithm consists of two parts:
the heuristic measure and an algorithm that uses it to search the state space, which
could be either of those mentioned above, for example, A-Star search. A good
introduction to these classic searching techniques can be found in the work of
Luger [29].

Two steps are involved in the graph-based geometric constraints solving
techniques. In the first step, the geometric problem is translated into a graph with
vertices representing the set of geometric elements and edges constraints. In the
second step, the constraint problem is handled by decomposing the graph into a set
of sub-graphs with each representing a standard problem that is solvable by a
specific solver [21, 26]. To illustrate, a 2D profile that has been fully constrained is
shown in Fig. 7.

In this example, A, B, C, and D are four end points, whereas a, b, c, and d
indicate four edges connecting those points. As indicated by the graph, the
explicitly specified constraints include the length between point C and point D, the
perpendicularity between lines c and d, the tangential constraint between arc d and
line a, the radius of d, of which the end points are A and D, and the angularity
between lines a and b. This is a solvable and well-constrained problem as the
solution is unique and all the possible positions, orientations, and dimensions of
the primitives can be determined based on the given constraints. For example, the
angularity between lines c and b, which is 458, can easily be derived. Additionally,
the length of edge a, between points A and B, can be derived as 2. If more

Unified Feature Paradigm 129

www.manaraa.com

constraints are added to this case, it will become an over-constraint problem. In
such a case, those redundant constraints should be determined and eliminated;
otherwise, the problem is unsolvable. Sometimes, even if a problem is fully
constrained, it might still be unsolvable due to the conflict between the inner
complexity of the problem and the limited technical ability of the solver. However,
such an unsolvable problem does not mean that there is no solution.

Technically, an under-constrained problem has an infinite number of solutions,
in which case, more constraints are needed to make the problem fully constrained
and solvable. Take the example of the constrained problem above: if the length
between points C and D were left unspecified, then the problem would not be fully
constrained and would thus have no unique solution. As shown in this case, even if
only one constraint is missing, the possible solutions are numerous. One such
possible variation is shown in Fig. 7: the length of the undefined edge c might be
any value. The tree decomposition analysis technique, based on graph theory, is
reportedly capable of analyzing under-constrained problems and determining the
needed constraints that, once added, could make the problem fully constrained and
solvable [20].

Since features are essentially sets of associative relationships among engi-
neering entities and hence not standalone, they must be dynamically evaluated due
to their interaction with one another. This characteristic thus creates the need to
maintain feature relationships. It is also desirable to distinguish between features

(b)

(a)

Fig. 7 Constraint graph of a
2D example, a Fully
constrained 2D profile. b The
corresponding constraint
graph. Legend Constraints. \
Perpendicular. Tangent.

x
y Coordinate system.

Points A, B, C, D. Edges a, b,
c, d. Default Line segments
between connected points

130 Z. Cheng et al.

www.manaraa.com

that determine other features and those that are being determined; dependency has
hierarchical relationships: feature A might depend on feature B, which is further
determined by feature C, and so on. Graph theory has been found to be capable of
describing such dynamic dependency relationships [3]. Dynamics here means that
entities are prone to be modified such that feature relationships will evolve cor-
respondingly. Thus, inter-feature dependencies create another kind of constraint,
which require maintenance to provide consistency.

To understand how modular integration works in the unified feature system, it is
best to have some knowledge about the interfacing functions that have been
defined in the unified feature modeling approach among the geometric module,
knowledge engineering module, relation manager, and database as shown in the
form of intra-stage associations in Fig. 8 [33].

Interfacing functions can be briefly specified as the following [30]:

1. Creating and editing feature geometry;
2. Supporting knowledge embedment [43];
3. Supporting data associations and validity maintenance.

Further detailed information about those functions can be found in the work of
Ma et al. [33]. Here the authors want to stress those elements pertaining to con-
straints modeling. When an application feature is created for supporting data
associations and validity maintenance, a resultant node is generated and inserted
into a relation manager by a certain mechanism, which is responsible for managing
the dependency relationships (or dependency constraints). At the same time, the

Fig. 8 Intra-stage associations in the unified feature modeling scheme [33]

Unified Feature Paradigm 131

www.manaraa.com

constraints, which are in charge of the feature’s presence and the values of feature
parameters or self-describing attributes, are also put into the relation manager and,
more importantly, are associated with the corresponding feature node [30]. Thus, it
could be said that one of the functions of a relation manager is working as an
intermediate agent between feature modification and constraint validation. The
agent is called when a change happens to any feature and change propagation
requires the constraints to validate the change.

It is necessary to determine whether or not a constraint is satisfied by evaluating
and validating the entities and variables to which the constraint refers. This
mechanism is called constraint-based association and is made possible by using a
JTMS and a numerical constraint solver or a rule-based expert system [24].
Constraint-based association is just one of the associations that evaluates the
validity of an information model among its composing entities and includes
sharing and dependency. In fact, satisfying all constraints is one of the significant
criteria for evaluating information validity, be it of a feature, a model, or the
consistency between conceptual and detail design [12]. Moreover, the embedded
constraints in the feature model are in themselves of a highly abstract data type
that allows inheritance by all instances and subclasses of the parental feature. In
addition, constraints, together with attributes and parameters specified in the
conceptual design feature model, are transformed into the detail design features
correspondingly as Attributes, parameters, and constraints [12].

6 Implementation Methods for the Unified Feature Model

Features are utilized to illustrate the geometric significance of a part or assembly,
and have exerted a huge influence in product design, product definition, and
reasoning for a diverse range of applications [46]. Moreover, much effort has been
directed toward extending feature technology to encapsulate more than just geo-
metric information about the product, such that non-geometric information can
also be modeled.

The unified feature modeling system is multi-view-oriented with an extended,
flexible, and self-contained generic feature definition, and is supported by a con-
sistent and associative data repository system without unnecessary duplicate data.
Its goal is to provide a common feature representation, modeling, implementation,
and application support platform. It is important to remember that the unified
feature system is not built from scratch; it is based on many other researchers’
efforts in a variety of fields, including solid modeling, parametric modeling,
constraint-based modeling, feature-based modeling, multi-view technology,
semantic feature modeling, artificial intelligence, just to name a few.

Since engineering knowledge first has to be acquired before it can be repre-
sented, the unified feature system should be well developed so that it is capable of
capturing engineering knowledge in multiple domains across the product lifecycle
with both predefined and user-extendable functionalities [43]. However, the

132 Z. Cheng et al.

www.manaraa.com

existing modeling techniques of various engineering domains are not universal.
While it is understandable that different domains choose the technique that is best
suited to a particular problem, it is not ideal from a unified feature system
development standpoint, as integration becomes almost unachievable in the
absence of a common modeling technique among diverse domains. In order to
address this difficulty, the unified feature system uses the object-oriented approach
as the key unifying mechanism which will be pursued throughout the process of
modeling.

This section is organized by starting with an introduction to the basic object-
oriented engineering modeling approach, followed by a briefing on the feature
concept and its variety of applications in the field of engineering informatics. Next,
the data representation and servicing functions of a typical feature class are
described. Finally, following a review of the emerging demands from industries
for more consistent and efficient systems, the ongoing development of a unified
feature system is presented. The unified feature system is aimed at supporting a
multi-view application framework. As the basic cell of the proposed framework, a
‘‘generic feature’’ class has been introduced in the system which provides a set of
common interfacing mechanisms for data storage, sharing, and manipulation that
is required for the polymorphism of applications.

6.1 Object-Oriented Approach

Over, the past decades, the object-oriented paradigm has become almost univer-
sally familiar [53]. Object-oriented applications have also been reported in dif-
ferent engineering domains, for example, in conceptual process design, automation
engineering, computer-aided process planning, computer-aided engineering, etc.
[28, 37–39, 55], which creates opportunities to integrate CAx systems from diverse
engineering domains using this approach.

Objects and classes are fundamental to the object-oriented paradigm. Objects
encapsulate pieces of data in a way that is self-contained, with communicating
messages that can interact with other objects. Classes are applied to organize
objects hierarchically with properties of inheritance and polymorphism. Indeed,
the key concepts of object-oriented modeling are abstraction, hierarchy, encap-
sulation, modularity, concurrency, and persistence [53], which have been widely
utilized in the implementation of the unified feature system. For instance, take the
example of one of the object-oriented programming languages, C++. The unified
feature is equivalent to the C++ generic feature in that the unified feature is just
what ‘‘object’’ is in C++, and the features and sub-features with hierarchical
structure in the unified feature correspond to ‘‘class’’ in C++. In the C++ pro-
gramming language, ‘‘class’’ describes both the properties (data) and behaviors
(functions) of objects; similarly, features in the unified feature system are capable
of modeling both static attributes and dynamic functions. In the following sections,
some of these attributes and methods will be introduced.

Unified Feature Paradigm 133

www.manaraa.com

6.2 Feature Representation

Feature may be represented at various levels [46]. For example, one may just
create a feature, such as a hole, to describe the geometric property of a hole, the
same as chamfer, cylinder, slot, and so on. Most features of this kind can be
expressed parametrically. However, in the unified feature system, the information
contained in the feature is richer. Knowledge (in the form of parameters, rules,
procedures, and so on) [43] is also included in the generic feature, which allows
features to be handled in a unified way for creation, deletion, and manipulation
through methods or functions defined in the generic feature [46]. The generic
feature, as an encapsulation of an information unit containing data and functions
(procedures to manipulate the data), should model the following information:

• Geometry;
• Information on dimensions, tolerances, materials, etc.;
• Design intent, engineering principles, and manufacturing methods, which are

modeled as functions with constraints imposed on the geometrical entities and
associated with a form of cross-linked relation graph.

In the object-oriented approach, it becomes natural that the unified feature
system is capable of the following feature manipulation mechanisms:

• Inserting or deleting an entire feature;
• Changing feature attributes;
• Invoking feature function.

The design of a unified feature modeling system should keep track and update
those attributes of the design model for certain qualities, including coupling,
cohesion, sufficiency, completeness, and primitiveness [53]. To achieve this goal,
the generic feature has to be modeled in a flexible and self-contained way.

6.3 Feature Shape Representation

Feature shape representation defines the geometrical and topological part of the
feature. It may be represented with different schemes in different application
domains. For instance, in the conceptual design stage it would be appropriate to
model the product with critical lines or faces in the form of relative positions,
orientations, fit relations, or relative motions, together with other significant
dimensions/specifications. However, in the detailed design stage, complete
geometry and specifications of the product should be developed with traditional
form features, which is richer in terms of information. Thus, methods should be
created for features to manipulate the shape of a feature, including, but not limited

134 Z. Cheng et al.

www.manaraa.com

to, creation, modification, and deletion [31, 32]. Meanwhile, methods should also
be available to link such detailed design features to the conceptual design feature.

Take the example seen in Fig. 9. In the conceptual design stage, two connected
boxes would be enough to illustrate the design of the spur gear pair. However, in
the detailed design stage, it is preferable to represent the product in solid in a
3-dimensional part model. Thus, there exist diverse forms of feature representation
for a specific application depending on the different stages of a product’s devel-
opment. Nevertheless, they are just different aspects of the same holistic feature
model. These associative form features can be defined from the same generic
feature class. Such feature objects can be instantiated with the known information
from one real world perspective; their members attributes may or may not be fully
initialized; and during the interactions among applications, their member attributes
may be further defined or reinterpreted from another perspective by generating
derivate objects or applying difference references which changes domain appli-
cation feature’ constituents. In object technology, such behavior is known as
polymorphism.

6.4 Member Functions

In order to construct the generic feature class, four groups of member functions are
needed: attribute access functions, modeling operation functions, feature evalua-
tion and validation functions, and data-saving and -restoring functions to and from
the repository [32]. Attribute access functions are defined to manage a feature’s
attributes, which may be either common to all types of features, e.g., backup(), or
feature-specific, e.g., getParameter() or setParameter(). Modeling operation func-
tions are responsible for controlling the behavior of features during the process of
modeling the product, including splitting, merging, translation, rotation, and so on.

Conceptual design
sketch feature (2D)

Detailed design form feature (3D)

Fig. 9 Example of features in conceptual design and detailed design of a pair of spur gears

Unified Feature Paradigm 135

www.manaraa.com

Feature evaluation and validation functions are defined to keep the feature con-
sistent when modifications are made to them [34, 35]. Saving and restoring
functions are crucial as they define the interactions between the runtime feature
models and the data repository, which is capable of representing data uniquely
without redundancies. In sum, functions should be defined for features not only to
operate within the feature, but also to interact with the geometric model, the expert
system, the relations manager, and the database [30].

In the current example, the possible functions for the previous interfacing
mechanism class, spur_gear_pairing, include but are not limited to the items as
shown in Fig. 10. It should be emphasized that each function should be enriched
according to engineering needs, and is not as simple as it appears to be in Fig. 10.
For example, the function responsible for stress analysis for the gear tooth should
take every piece of knowledge needed to fulfill this functionality, including the
material properties, pitch, pressure angle, velocity effect, face width, and appli-
cation factor, among others. All this information is stored in the data repository,
from where the function can encapsulate them into features for easy manipulation.

6.5 Multi-View Concept

Feature sets are determined both by product types, such as casting or sheet metal,
and by people’s viewpoints or engineering tasks, such as design, finite element
analysis (FEA), or process planning [46]. Feature space is a set of features that
serves engineers’ specific purposes when carrying out various engineering tasks.
Traditionally, the feature space defines the application-specific features that are
related through feature mapping or feature recognition mechanisms [45]. In dif-
ferent application domains, feature definitions become diverse, which creates
barriers to maintaining feature consistency across all application domains, because

-Instantiate();
-Evaluate_gear_ratio();
-Get_gear_ratio();
-Evaluate_pitch();
-Get_pitch();
-Evaluate_teeth_number();
-Get_teeth_number();
-Delete();
-Constraint_solving();
-Save();
-Restore();
-Feature_validation();
-Stress_analysis_of_a_tooth();
-Assembly_analysis();
-Assign_material();
…

Fig. 10 Partial list of class
functions required for the
spur_gear_pairing feature

136 Z. Cheng et al.

www.manaraa.com

different data elements in the product model are contributed by different
applications.

In the multi-view approach, ideally, each application has its own view of the
data, which is unique, and each view is associated with the master (or common)
model as a set of features. In the unified feature system, a multi-view technique is
applied so that the generic feature will be defined in such a way that different
application domains will be able to extract information from the unique generic
feature, rather than from different application-specific features through feature
recognition or feature mapping. Consequently, modifications made in one specific
application can be propagated to other ‘‘views’’ of the same generic feature
automatically. For an in-depth discussion of the multi-view technique, see the
work of de Kraker, Bronsvoort, and Bidarra [5, 6, 16], who address the problem of
editing feature views on a common net-shape model with the help of the cellular
approach. Moreover, the unified feature goes further to accommodate not only the
form feature but also non-geometric features into the generic feature model. In the
spur_gear_pairing example, both the application domain of conceptual design and
detailed design are manipulating the same data set encapsulated in the same
generic feature.

6.6 Functional Operations and their Processes
and Procedures

Operations in the unified feature system are what make processes and procedures
possible. As has been discussed above, features are defined in the object-oriented
approach, where operations can be modeled as methods, or functions, in the fea-
ture classes. An operation is referred to as a set of Associated commands (or linked
functional methods) that are used to realize the functions and manipulations of
feature entities within or across multiple engineering application packages.
Moreover, operations can be modeled as separate operation classes associated with
specific feature functions.

For a functional application, operations exist in various levels of the unified
feature system, from the lowest layer of data manipulation in the data structure, to
generic feature function, to functional feature functions, to the modular application
functions, and to UI functions (see Fig. 11). Lower-level functional operations
support the higher-level ones; the application-specific functions should be defined
to support the application-specific feature model on the basis of a unified generic
feature model.

Take the example of a design feature. Functions like creating, editing, and
checking the validity of features such as cylinders, holes, or tapers should be well
defined as encapsulated methods for either associated design features or a set of
predefined standard features [42]. Further, operations in a CAD module can be
classified into two types: geometry-related and non-geometry-related operations,

Unified Feature Paradigm 137

www.manaraa.com

Operating Systems and UIs

Application Functions

Feature -based Functions

Generic Functions

Data Structure
Data Manipulation Functions

Windows/Lynx

Mold Wizard/CAM
CAD/CAE/…

APIs and user-defined
functions

Core Functions

Solid Model

Fig. 11 Layers of functional
applications in the
architecture

Table 1 Functional application implementation API support resources required

Tools Functionality API support resources

CAD Creating geometrical description of
products as well as individual parts with
all the necessary dimensions and
specifications

A facility to directly evaluate and modify
the parametric rules or constraints on
the geometry

Scalable data/knowledge repository
Complementary macro and low-level

programmability
Programmable functions to generate

history-tree-supported geometry
Functions to traverse and modify the history

tree and the geometry tree
Interfaces for geometric entity-level API

calls
Conflict or interference awareness functions
Control of regeneration
…

CAE Pre/post geometry data processing
capability dedicated for auto-meshing
and manual mesh refinements; finite
element analysis functionality

Macro programming control of GUI
commands and programmatic
interrogation/control of the model
properties at the mesh level

Math/statistical capability for post-
processing enhancements

Detailed design optimization
Interactive and programmatic capabilities
…

CAM Associative geometry referencing capability
with common CAD models;

Allowing further development via two-tier
support with ‘‘user function’’ type of
macro commands and lower-level
programming interfaces that
complement the basic CAD
functionality;

Providing manufacturing specific functions
including CNC machine tool path
generation;

Assisting tools for molding, forming, and
fixture design; Providing access to all databases, process

planning rules, feature mapping, and
tool path generation;

Interfaces to CAE system for some FEA-
based manufacturing analysis such as
plastic molding flow analysis Tying the process definition to the local

factory layout and providing some
simulation tools

…

138 Z. Cheng et al.

www.manaraa.com

where geometry-related operations affect the geometric model and non-geometry-
related operations can be further classified into ‘‘auxiliary’’ operations and
‘‘additional’’ operations [9].

The implementation is, however, less straightforward than this. For example,
different application-specific features are modeled according to different func-
tionality requirements at the user level in the form of specifications, while the
realization of such features has to meet the specific application programming
interface (API) data structure requirement. Table 1 lists some API resources
provided. Thus, it can be seen that the procedures and processes of the unified
feature system define how functional operations can work properly among and
within different levels of the subsystems and modules. It can be appreciated that
processes and procedures are defined within certain modules and can be shared
among them from certain common perspectives, or within the scope of some
configuration units.

7 Summary

This chapter introduced the unified feature modeling scheme, a systematic
approach to address semantics existing in engineering activities from design to
manufacturing, which can meet the needs of modern concurrent and collaborative
engineering. The framework of the unified feature system, including the modeling
scheme, unified cellular modeling process, knowledge-based reasoning, and
association and change propagation have been presented. Constraints modeling,
defined in a broader sense than simply geometric constraints, has also been
illustrated with the help of graph theory embedded in the constraint solver. Mul-
tiple-view technique in the unified feature system enables engineers to access data
pertaining to specific engineering domains from the generic feature, rather than
from specific features that are gained through feature recognition or feature
mapping; this is the key to maintaining feature consistency. Different function
operations are available in different levels of the system, as well as in different
engineering domains, to support the usability of the unified feature system.

The research approach presented here forms the foundation of associative and
unified feature-based technology toward information integration for collaborative
product development. Compared with the reported works in the literature as
reviewed in ‘‘A Review of Data Representation of Product and Process Models’’,
this research aims to solve the interoperability of CAD systems at feature level.
This approach is unique because interoperability is difficult to realize and common
CAx implementation efforts are limited by using a file-based approach that typi-
cally represents only geometry. A generic feature concept supporting different
computer-aided applications is adopted in this research. It includes associated
geometric and NGE and is flexible and scalable because product information is

Unified Feature Paradigm 139

http://dx.doi.org/10.1007/978-1-4471-5073-2_2

www.manaraa.com

represented in object-oriented feature entities. Such feature objects support poly-
morphism and make information sharing possible with a finer level of granularity
in comparison with the traditional file-based approach. With the generic feature
definition, the new concept of ‘‘unified feature’’ scheme is proposed for developing
a multi-facet and collaborative engineering informatics implementation method
aiming to achieve efficient communication between multiple engineering systems
without heavy data load.

It can be appreciated that a database approach is more efficient than a file-based
approach [18, 40, 44]. Theoretically, databases can be designed as feature-oriented
by using the proposed generic feature definition and the unified feature scheme. To
enhance interoperability, some mapping mechanisms from an application to a
neutral format product model and from neutral format back to application-specific
feature model are required. Feature-level information as well as the related
associations among them can be maintained in a hierarchical structure [48].
Feature-oriented databases can be generic for adding, deleting, updating, and
querying information. Furthermore, the database approach is expected to reduce
duplicated data and potential data inconsistency. Ideally, in a feature-oriented
database, product and process information across different associated database
tables, which may include geometrical entities, features, security data and others,
would be globally managed and shared for multi-users via the network. Based on
this feature-oriented database technology, knowledge workers or application
software developers can consistently organize the product model for different
application views, while the product model repository can be constructed simul-
taneously with levels of granularity [54]. Such a repository system is expected to
enhance the support for concurrent and collaborative engineering. Clearly, much
future research is expected to make this idea workable in any real application.

So far, this proposed unified feature scheme is limited to the mechanical
product design field, which covers product design and manufacturing. Theoreti-
cally, the generic feature model could be expanded to other CAx applications, or
other engineering domains such as civil, or electrical/electronic engineering.

References

1. Bettig B, Hoffmann CM (2011) Geometric constraint solving in parametric computer-aided
design. ASME Trans J Comput Inf Sci Eng 11:021001–021009

2. Bidarra R, Bronsvoort WF (1996) Towards classification and automatic detection of feature
interactions. In: Proceedings of the dedicated conference on mechatronics, 29th ISATA.
Florence, Italy

3. Bidarra R, Bronsvoort WF (2000) Semantic feature modeling. Comput Aided Des
32:201–225

4. Bidarra R, de Kraker KJ, Bronsvoort WF (1998) Representation and management of feature
information in a cellular model. Comput Aided Des 30:301–313

5. Bidarra R, Madeirab J, Neelsa WJ, Bronsvoort WF (2005) Efficiency of boundary evaluation
for a cellular model. Comput Aided Des 37:1266–1284

140 Z. Cheng et al.

www.manaraa.com

6. Bronsvoort WF, Noort A (2004) Multiple-view feature modelling for integral product
development. Comput Aided Des 36:929–946

7. Chen G, Ma YS, Thimm G, Tang SH (2004) Unified feature based integration of design and
process planning. In: Hinduja S (ed) Proceedings of the 34th international MATADOR
conference, Springer, London

8. Chen G, Ma YS, Thimm G, Tang SH (2004) Unified feature modeling scheme for the
integration of CAD and Cax. Comput Aided Des Appl 1:595–601

9. Chen G, Ma YS, Ming XG, Thimm G, Lee SG, Khoo LP, Tang SH, Lu WF (2005) A unified
feature modeling scheme for multi-applications in PLM. In: Sobolewski M, Ghodous P (eds)
Proceedings of the 12th ISPE international conference on concurrent engineering (CE2005):
Research and applications -next generation concurrent engineering: smart and concurrent
integration of product data, services, and control strategies. ISPE, Dallas

10. Chen G, Ma YS, Thimm G, Tang SH (2005) Knowledge-based reasoning in a unified feature
modeling scheme. Comput Aided Des Appl 2:173–182

11. Chen G, Ma YS, Thimm G, Tang SH (2006) Associations in a unified feature modeling
scheme. ASME Trans J Comput Inf Sci Eng 6:114–126

12. Chen G, Ma YS, Thimm G, Tang SH (2006) Using cellular topology in a unified feature
modeling scheme. Comput Aided Des Appl 3:89–98

13. Chen JY, Ma YS, Wang CL, Au CK (2005) Collaborative design environment with multiple
CAD systems. Comput Aided Des Appl 2:367–376

14. D’Souza DF, Wills AC (1999) Objects, components, and frameworks with UML—the
CatalysisSM approach. Addison Wesley Longman, Boston

15. Dankwort CW, Weidlich R, Guenther B, Blanrock JE (2004) Engineers’ Cax education: it’s
not only CAD. Comput Aided Des 36:1339–1450

16. de Kraker KJ, Dohmen M, Bronsvoort WF (1997) Maintaining multiple views in feature
modeling. In: Proceedings of the fourth ACM symposium on solid modeling and applications
(SMA 97), ACM, New York

17. de Kraker KJ, Dohmen M, Bronsvoort WF (1997) Multiple-way feature conversion: opening
a view. In: Pratt M, Siriram R, Wozny M (eds) Product modeling for computer integrated
design and manufacture. Chapman and Hall, London

18. Fortier PJ (1997) Database systems handbook. McGraw-Hill, New York
19. Forbus KD, de Kleer J (1993) Building problem solvers. MIT Press, Cambridge
20. Fudos I (1995) Constraint solving for computer aided design. PhD Thesis, Purdue University
21. Gao XS, Lin Q, Zhang GF (2006) A C-tree decomposition algorithm for 2D and 3D

geometric constraint solving. Comput Aided Des 38:1–13
22. Geelink R, Salomons OW, Van Slooten F, Van Houten FJAM, Kals HJJ (1995) Unified

feature definition for feature based design and feature based manufacturing. In: Proceedings
of the 15th annual international computers in engineering conference and the 9th annual
ASME engineering database symposium

23. Hoffmann C, Joan-Arinyo R (2002) Parametric modeling. In: Farin G, Hoschek J, Kim MS
(eds) Handbook of CAGD. Elsevier, Amsterdam

24. Hower W, Graf WF (1996) A bibliographical survey of constraint-based approaches to CAD,
graphics, layout, visualization, and related topics. Knowl Based Syst 9:449–464

25. Joan-Arinyo R, Soto-Riera A, Vila-Marta S, Vilaplana-Pasto J (2003) Transforming an
under-constrained geometric constraint problem into a well-constrained one. ACM Solid
Modeling 2003 (SM’03), Seattle, Washington, USA

26. Joan-Arinyo R, Tarrés-Puertas M, Vila-Marta S (2009) Tree decomposition of geometric
constraint graphs based on computing graph circuits. In: Proceedings of 2009 SIAM/ACM
joint conference on geometric and physical modeling

27. Kim KY, Manley DG, Yang HJ (2006) Ontology-based assembly design and information
sharing for collaborative product development. Comput Aided Des 38:1233–1250

28. Law HW, Tam HY, Chan AHS, Hui IK (2001) Object-oriented knowledge-based computer-
aided process planning system for bare circuit boards manufacturing. Comput Ind
45:137–153

Unified Feature Paradigm 141

www.manaraa.com

29. Luger GF (2002) Artificial intelligence structures and strategies for complex problem
solving, 4th edn. Addison Wesley, England

30. Ma YS (2009) Towards semantic interoperability of collaborative engineering in oil
production industry. Concurrent Eng 17:111–119

31. Ma YS, Britton GA, Tor SB, Jin LY (2007) Associative assembly design features: concept,
implementation and application. Int J Adv Manuf Technol 32:434–444

32. Ma YS, Tang SH, Chen G (2007) A fine-grain and feature-oriented product database for
collaborative engineering. In: Li WD, Ong SK, Nee AYC, McMahon CA (eds) Collaborative
product design and manufacturing methodologies and applications. Springer, England

33. Ma YS, Chen G, Thimm G (2008) Change propagation algorithm in a unified feature
modeling scheme. Comput Ind 59:110–118

34. Ma YS, Chen G, Thimm G (2008) Paradigm shift: unified and associative feature-based
concurrent and collaborative engineering. J Intell Manuf 19:626–641

35. Ma YS, Chen G, Thimm G (2009) Fine grain feature associations in collaborative design and
manufacturing—a new modeling approach. In: Wang LH, Nee AYC (eds) Collaborative
design and planning for digital manufacturing. Springer, London

36. Ma YS, Tang SH, Au CK, Chen JY (2009) Collaborative feature-based design via operations
with a fine-grain product database. Comput Ind 60:381–391

37. Mackerle J (2004) Object-oriented programming in FEM and BEM: a bibliography
(1990–2003). Adv Eng Softw 35:325–336

38. Maffezzoni C, Ferrarini L, Carpanzano E (1999) Object-oriented models for advanced
automation engineering. Control Eng Pract 7:957–968

39. Marquardt W (1992) An object-oriented representation of structured process models. Comput
Chem Eng 16(Suppl 1):S329–S336

40. Mittra SS (1991) Principles of relational database systems. Prentice Hall, Englewood Cliffs
41. Noort A, Hoek GFM, Bronsvoort WF (2002) Integrating part and assembly modeling.

Comput Aided Des 34:899–912
42. Ovtcharova J, Jasnoch U (1994) Featured-based design and consistency management in CAD

applications: a unified approach. Adv Eng Softw 20:65–73
43. Penoyer JA, Burnett G, Fawcett DJ, Liou SY (2000) Knowledge based product life cycle

systems: principles of integration of KBE and C3P. Comput Aided Des 32:311–320
44. Ramakrishnan R, Gehrke J (2000) Database management systems. McGraw-Hill, Boston
45. Shah JJ (1988) Feature transformations between application-specific feature spaces. Comput

Aided Eng J 5:247–255
46. Shah JJ (1991) Assessment of features technology. Comput Aided Des 23:331–343
47. Shah JJ, Mantyla M (1995) Parametric and feature-based CAD/CAM concepts, techniques

and applications. Wiley-Interscience, New York
48. Shirinivas SG, Vetrivel S, Elango NM (2010) Applications of graph theory in computer

science: an overview. Int J Eng Sci Tech 2:4610–4621
49. Smit MS, Bronsvoort WF (2009) Integration of design and analysis models. Comput Aided

Des Appl 6:795–808
50. Tang SH (2007) The investigation for a feature-oriented product database. PhD thesis, School

of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
51. Tang SH, Ma YS, Chen G (2004) A feature-oriented database framework for seb-based CAx

applications. Comput Aided Des Appl 1:117–125
52. Tornincasa S, Monaca FD (2010) The future and the evolution of CAD. In: 14th international

research/expert conference: trends in the development of machinery and associated
technology, Mediterranean Cruise

53. Turk Z (1993) Object-oriented modeling and integrated CAD. Autom Constr 1:323–337
54. Uddin MM, Ma YS (2011) Towards a feature-based and fine-grain product repository for

heterogeneous computer-aided systems. Enabling manufacturing competitiveness and
economic sustainability (4th CARV2011 Proceedings). Springer, London

55. Wang Q, Zhu JY et al (1995) An intelligent design environment for conceptual process
design. Eng Appl Artif Intell 8:115–127

142 Z. Cheng et al.

www.manaraa.com

Features and Interoperability
of Computer Aided Engineering Systems

Yanan Xie, Jikai Liu, Hongyi Liu and Y.-S. Ma

1 CAx Systems, Customization, and Application
Development

1.1 Introduction to CAx Systems

CAx is a broad term that means the use of computer technology to aid in the
design, analysis, and manufacture of products. CAx usually includes computer-
aided design (CAD), computer-aided engineering (CAE), computer-aided manu-
facture (CAM), computer-aided process planning (CAPP), and product data
management (PDM) [78].

In the design process, increasingly more tasks have been supported by CAx
tools in the last 30 years. Starting with drafting and surfacing, classical mechanical
design was gradually replaced by 3D wire frame, solid modeling, and parametric
and feature-based design. Today the entire product creation process, including
production preparation, is run with CAx. According to the various application
stages, CAx systems were developed with different computer solutions, such as
computer-aided styling (CAS) [98], computer-aided esthetic design (CAAD) [76],
computer-aided conceptual design (CACD) [97], and so on. All these technologies
are categorized as different aspects of CAD/CAM and CAE, two of the more
important CAx technologies, were developed almost independently. The latter is
mainly used in a limited sense for simulation and finite element analysis (FEA).
Although started independently as separate packages, both technologies require
geometry data input from CAD.

Y. Xie � J. Liu � H. Liu � Y.-S. Ma (&)
Department of Mechanical Engineering, University of Alberta,
Edmonton, AB T6G 2G8, Canada
e-mail: yongsheng.ma@ualberta.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_6, � Springer-Verlag London 2013

143

www.manaraa.com

1.2 Function and Data Management of CAx

Advanced CAx tools merge many different aspects of product lifecycle manage-
ment (PLM), including design, FEA, manufacturing, production planning, virtual
product testing, product documentation, and product support. With the growing
integration of these CAx tools, data and information management has become
increasingly important to realizing those expected industrial benefits. Currently,
the complex network of CAx systems and their various data cannot be handled
without a product data management system (PDMS). PDMS was regarded as the
backbone of modern product development and now is extended to support the
whole product lifecycle. This new paradigm of coherent multistage and multi-view
information management has led to a wave of research effort labeled PLM.

1.3 Main CAx Software Tools

CAx software tools have been produced since the 1970s for a variety of computer
platforms. A landscape of the main CAx software tools is shown in Table 1. A
kernel is the brain of the CAD application. A modeling kernel is a collection of
classes and components that comprise mathematical functions performing specific
modeling tasks [102]. Currently, in industry, CAD applications are usually gen-
erated from a commercially available kernel. AutoCAD, NX [64] and CATIA [13]
use their own kernels, while most other applications use either ACIS from Dassault
Systèmes [86] or Parasolid from Simence PLM [64].

Table 1 The main CAx
software tools

CAD AutoCAD
Autodesk inventor
NXCAD
Solid edge
Pro/ENGINEER
CATIA
Solid works

CAE NX Nastran
CATIAABAQUS

CAM NXCAM
CATIA

PDM Team center
Windchill

144 Y. Xie et al.

www.manaraa.com

1.4 Customization

As CAx systems are so widely used in nearly every industry, deploying the right
computer solution for each aspect of the engineering workflow demands exact data
structure matching for information exchange and well-planned procedures to
streamline the execution of computer functions. Industries that produce medical
devices, machine tools, apparel, as well as those specialized engineering fields
such as metrology and ship-building, are characterized by the need for special CAx
software for specific functions. Rather than using the common ‘‘as-is’’ versions of
CAx software tools, progressive companies often develop their own versions as a
way to implement the required differentiation in the product development cycle.
Such customized solutions can accelerate new process chains, and improve the
final customer experience. Many software platforms like NX (see Fig. 1) and
CATIA [13] offer customized solutions for specific CAx process chains.

The hierarchy within the CAx system is shown in Table 2, which illustrates the
four levels of composition in the typical CAx application chain. Levels 1 and 2 are
developed by various vendors as packaged commercial products. They are vendor-
dependent and do not differ much according to customer requirements, with only
limited customization features for user interfaces and user-defined templates.
Advanced solutions are categorized as ‘‘extended application modules’’ in level 3
and ‘‘tailored solutions’’ in level 4.

In level 3, users select those extended application modules offered by the
vendors according to more specific application areas. For example, MoldWizard
will be selected for plastic injection mold design. There are hundreds of choices in
this level: within the Siemens NX suite alone, there are many such modules
offered, including machining application modules such as 3-Axis Machining, 5-
Axis Machining, CAD for Numerical control (NC) Programming, Data Exchange,
High Speed Machining, Machining Simulation, Multi-Function Machining,
NCData Managament, Part Planning, Post Processing and Post Processor Library,
Programming Automation, Resource Management, Shop Documentation, Wire
EDM, and more [64].

Most platforms offer open API to support secondary development. The cus-
tomization in level 4 therefore mainly comes from the connection with customized
solutions. The development of customized solutions depends on the real needs of
consumers and usually has an evident economic advantage. Further discussion on
this topic can be found in Sect. 1.5.

Fig. 1 Partial NX CAx process chain

Features and Interoperability of Computer Aided Engineering Systems 145

www.manaraa.com

1.5 Application Development

Application development based on the CAx system is a programming- and
research-intensive process. Numerous applications have been developed and
widely used in recent years, but this still cannot satisfy users’ needs. Currently,
most CAx software packages offer application programming interfaces (APIs) to
satisfy application development needs [66]. An API is a source code-based
specification intended to be used as an interface by software components to
communicate with each other. An API may include specifications for routines, data
structures, object classes, and variables. For example, CATIA and NX both offer
their own open API for application development.

CATIA V6 can be adapted using Visual Basic and C ++ programming lan-
guages via component application architecture (CAA). CAA is Dassault Systè-
mes’s comprehensive, open-development platform that enables developers to
integrate their solutions. This collaboration expands Dassault Systèmes’s system
offerings and gives customers a larger set of CAx solutions to meet their specific
industrial needs [14].

Pro/TOOLKIT is an API that allows Pro/ENGINEER functionality to be aug-
mented and/or customized to meet the specific needs of PTC’s customer base by
using the ‘‘C’’ programming language. Specifically, Pro/TOOLKIT provides the
ability to customize the standard Pro/ENGINEER user interface, automate pro-
cesses involving repetitive steps, integrate proprietary or other external applica-
tions with Pro/ENGINEER, and develop customized end-user applications for
model creation, design rule verification, and drawing automation [71].

2 Interoperability Among Systems

As part of the trend toward customizable and flexible product development tool
suites, multiple software tools—even from different vendors—are often used for
various phases of product development. As a result, the problem of interoperability
among systems emerges. This reflects the unfortunate reality that software vendors
tend to use proprietary data representation as a competitive advantage, which
severely inhibits interoperability.

Table 2 Hierarchies of a CAx system

Level Composition Description

4 Tailored solutions Specific to end-user companies
3 Extended application

modules
CAM for milling, mold wizard, etc.

2 CAD/CAM/CAE Platforms such as NX, Pro-E
1 Kernel Core kernels like parasolid and ACIS

146 Y. Xie et al.

www.manaraa.com

To solve the interoperability problem, it is necessary to identify two macro
domains of application: horizontal data exchange and vertical data exchange [7].
Horizontal data exchange is taken to mean data exchange between different CAD
systems, mainly focusing on geometric information. However, more important
than just geometric information is the design intent, which is stored in design
history and constraints. This makes the design intent reservation during data
exchange something of a hot issue. At present, some commercial tools for CAD
geometry data exchange are available, such as a conversion engine in CrossCAD
[96], which can import, analyze, heal, and export models across CAD systems.

Currently, it is common practice to have a design geometry data model created
from CAD systems translated into an intermediate data format like the STEP file
format, and then imported into CAE and CAM applications. Conceptually, such
data exchange is referred to as vertical because the data is transferred from the
upstream application into downstream applications. In selection of the interme-
diate data format, there are two options: a proprietary data format or a neutral data
format (NDF) [99]. Most commercial data exchange service providers tend to use
a proprietary data format, which offers a competitive edge. For instance, NX and
its PLM) solution Teamcenter are aimed at offering a complete solution from
design to manufacture [64]. In contrast, an increasing number of industry com-
panies have adopted neutral formats for data exchange; in the course of data
exchange technology development history, several international standard data
formats were proposed, such as IGES, PDES, and STEP [67]. Among these
standards, STEP is the most advanced and complex, covering almost all the
applications used in each product lifecycle phase. This topic is discussed in more
detail in Sect. 3.

In contrast to file-based data exchange, recent research [7] has attempted to
create a flat interapplication data service scheme that enables various engineering
applications to share their models via the use of API functions. This approach is
referred to as interface-based horizontal data exchange (see Fig. 2). Typically,
client–server architecture is used for such a system: the CAD system provides its
functions and data models via a coordination server, while the downstream
applications receive services as subscribers. Bianconi et al. [7] summarize the
advantages of such a system as data centralization, synchronization, and
encapsulation.

2.1 Review of Interoperability and Related Technologies

The interoperability gaps among different computer-aided tools are well recog-
nized across engineering domains, which call urgently for systematic integration to
enhance interoperability and, hence, benefit the lifecycle. From the point of view
of concurrent engineering, interoperability among applications can be enhanced on
three levels: knowledge, information, and data [61]. As illustrated in Fig. 3, a NDF
(such as IGES, STEP, or IDEF) provides standards to facilitate data sharing and

Features and Interoperability of Computer Aided Engineering Systems 147

www.manaraa.com

exchange from the bottom data layer. Semantic modeling, a methodology that can
effectively support knowledge engineering and feature knowledge, offers a flexible
and scalable way to enhance interoperability.

2.2 Neutral Data Format

From the data layer, NDF provides a standardized intermediate data model to
facilitate data exchange and sharing. An illustration of data transfer via NDF
between computer applications among various domains is shown in Fig. 4. The
purpose of NDF is to transfer data from all applications into a NDF, which requires
the development of pre- and post-translators for each computer system involved to
enable data transfer [67]. This significantly reduces the number of interfaces
needed, as well as development effort and maintenance complexity. Based on this
neutral data translation approach, any future potential development of more
advanced application integration within a broader collaboration environment will
be made feasible and efficient, as only the interface between NDF and the new

Fig. 2 Interface-based
horizontal data exchange [7]

Knowledge
 Layer

Information
 Layer

Data
Layer

Semantic Modeling

Knowledge
Engineering

IGES

Neutral Data Format

…… IDEFSTEP

Feature
Technology

Ontology

Fig. 3 Data representation
pyramid for interoperability

148 Y. Xie et al.

www.manaraa.com

application needs to be developed. Three foremost NDFs are IGES, STEP, and
electronic design interchange format (EDIF), which are elaborated in the following
subsections.

2.2.1 Initial Graphics Exchange Specification

The Initial graphics exchange specification (IGES), the foremost NDF, is a stan-
dard for graphics information exchange between CAx systems. It is designed to be
independent of any computer systems but is capable of capturing all the infor-
mation existing in the CAx applications, including binary information, start,
global, directory entry, parameter data, and terminate sections [67].

Although efforts spent on improving capability with solid modeling has gained
some results in IGES versions 4.0 and 5.0, the deficiency in solid modeling is still
not significantly improved, which always leads to loss of information during the
process of data exchange and sharing. The existence of the Standard for the
exchange of product data model (STEP) reduced the urgency of further develop-
ment and made IGES version 5.3 the last published standard in its series in 1996.

2.2.2 Standard for the Exchange of Product Data Models

STEP (ISO 10303), a standard for the representation and exchange of engineering
product data, makes it possible to develop a complete and integrated product
description in a NDF and, hence, to facilitate interoperability among different
computer-aided systems throughout the product development lifecycle [40]. The
standard is also known as the STEP. It is organized in a series of sections, or
application parts (APs), covering the representation of product information
(including components and assemblies) as well as the exchange of product data,
which provides the capability of describing data throughout the lifecycle inde-
pendently of any particular computer system.

Application A

Pre-translator

Post-translator

Application A
Database

Application B

Pre-translator

Post-translator

Application B
Database

Neutral Format
Exchange

File

Fig. 4 Data transfer between computer-aided tools

Features and Interoperability of Computer Aided Engineering Systems 149

www.manaraa.com

STEP was developed as an alternative to IGES and boasts a more compre-
hensive set of definitions [87] for a set of neutral product information entities,
especially for geometric ones. STEP provides a mechanism that describes a
complete and unambiguous product definition throughout the lifecycle of a
product, independent of any computer system. This international standard is
accepted by most vendors, so it is quite suitable for use in realizing data inter-
operability. Users can implement proper APs to meet their product data exchange
requirements [39]. Some APs are listed in Table 3, with their roles in integrating
manufacturing activities shown in Fig. 5. Users can implement proper APs to meet
their product data exchange requirements [39, 40].

APs across the disciplines of chemical, mechanical, and electrical engineering
are illustrated in Fig. 6. AP 221, ‘‘Functional Data and Their Schematic Repre-
sentation for Process Plants,’’ specifies an exchange scheme that is applicable to
chemical process projects [46]. The scheme describes the data structures used for
communicating functional design and engineering specifications of system com-
ponents, which can also be used for subsequent procurement and component man-
ufacturing generally carried out by engineering, procurement, and construction
(EPC) companies. Reference data, which comprises instanced templates in the form
of library elements, is designed to be referenced together with the data structure
specifications to facilitate collaborative system design across disciplines [3].

Another important application protocol, AP 227 (‘‘Plant Spatial Configura-
tion’’), provides a standard for exchange among engineers from different disci-
plines as well as operation owners and EPC companies during the lifecycle of
chemical process projects. In this AP, the information requirements for the
exchange of design and layout models of a process plant are specified. It also
specifies other integrated engineering resources, such as those models required for
design, analysis, and fabrication of piping components and piping systems [44].
The exchange of functional characteristics of heating, ventilation, and air condi-
tioning (HVAC), mechanical and piping components and systems, and schematic
representation are also addressed. Similarly, it is specified in AP 231, ‘‘Process
Engineering Data: Process Design and Process Specifications of Major Equip-
ment,’’ that the representation of process steps involved in a chemical process be

Table 3 STEP application protocols

AP Title

AP204 Mechanical design using boundary representation
AP207 Sheet metal die planning and design
AP209 Composite and metallic structural analysis and related design
AP219 Managing dimensional inspection of solid parts or assemblies
AP223 Exchange of design and manufacturing product information for cast parts
AP224 Mechanical product definition for process planning using machining features
AP238 Application-interpreted model for computerized numeric controllers
AP240 Numerical control process plans for machined parts

150 Y. Xie et al.

www.manaraa.com

included, along with material and reaction data, process flow diagrams (PFDs), and
detailed process and plant descriptions [3].

Within the mechanical engineering domain, there are even more APs defined in
STEP, such as APs 203, 204, 214, 224, and 240. Application protocols for
information representation and data sharing within mechanical engineering among
CAx systems are addressed in these APs. This provides a neutral file exchange
support independent of any particular computer-aided system.

Thanks to the collaboration between the International Organization for Stan-
dardization (ISO) and the International Electrotechnical Commission (IEC), STEP
also defines such APs as AP 210 and AP 212, which are applicable to projects that
span both mechanical, electrical, and electronic engineering domains. AP 210,
‘‘Electronic Assembly, Interconnect, and Packaging Design,’’ specifies the trans-
formation from detailed requirement data (such as functional descriptions of the
device, manufacturing processes required and other design specifications) into data

Fig. 5 Data exchange APs based on STEP [39]

Chemical
Engineering

Mechanical
Engineering

Electrical
Engineering

AP 221

AP 227

AP 231

AP 214

AP 224

AP 240

AP 210

AP 212

Lifecycle Support

AP 227 AP 227

…...

Fig. 6 Application
protocols providing lifecycle
support

Features and Interoperability of Computer Aided Engineering Systems 151

www.manaraa.com

structures and formats that are analyzable and processable by the manufacturing
systems, which will facilitate information-sharing between engineers from dif-
ferent domains [48]. However, this AP is not limited to the electronic domain.
Another AP specified in the electronic domain, ‘‘Electrotechnical Design and
Installation,’’ (AP 212) specifies the information shared between the systems
involved in the design and installation as well as the commissioning of electrical
equipment [48]. The data specified in this AP, such as that which pertains to
equipment design and installation, will effectively enhance interoperability across
domains.

AP 232, ‘‘Technical Data Packaging Core Information and Exchange’’,
addresses the packaging of products for exchange as well as the exchange
requirements of product data groupings [42]. AP 239 is another member of the
application protocol series specified for product lifecycle support, which can be
applied to developing an integrated series of interfaces to provide data inter-
changeability within one domain or across disciplines [45]. These APs can be used
to support the lifecycle of chemical process engineering projects (from process
conceptual design, engineering analysis, and mechanical engineering and design)
to implementation and maintenance, which involves the disciplines of chemical,
mechanical, and electrical engineering.

Although STEP has contributed considerably to interoperability, it still suffers
from the complexity of implementation in real applications, which requires too
much information modeling and development [61]. Restricted by the APIs of
commercial CAD systems, which are not designed for model exchange, infor-
mation associated with the models, including the design intent, is very likely to be
stripped from the data during the exchange process [52]. Hence, the stalled effort
toward interoperability needs the introduction of a new technology, such as feature
technology.

3 Current Standards’ Limitations

Among the standards established for product information exchange, IGES and
STEP, which have been set up and maintained by American National Standards
Institute (ANSI) and ISO, respectively, are the most powerful and widely accepted.
In this section, the advantages and limitations of both are described in detail.

IGES, a data format depicting product design and manufacturing information,
mainly assists data exchange between CAD and CAM systems. IGES is inde-
pendent of all CAD and CAM systems, and is thus an NDF [67]. As IGES was
established in 1980, it has some (if limited) capability for the exchange of points,
edges, and surface entities, but cannot handle solids at all; IGES, therefore, cannot
support the full range of CAx entity chain processes. Ideally, data exchange should
be supported across the product lifecycle [51]. Although IGES has obvious
drawbacks, it still has 20 % of the usage level in the CAD data exchange field in

152 Y. Xie et al.

www.manaraa.com

North America due to the simplicity of its implementation. In comparison, STEP
only has about 15 % [37].

The best-developed application of STEP is the achievement of CAD/CAM and
computer numerical control (CNC) integration. The relevant standard is ISO 6983
[38]. Recently, new standards have been developed, such as ISO 14649 [43] and
ISO 10303 AP 238 [47]. They provide CAM and CNC vendors the opportunity to
develop highly intelligent CNC controllers, which can realize bidirectional com-
munication of standardized geometric and manufacturing data in the form of
features [106].

For future research, new standards or new versions of existing standards should
better support engineering semantics. Product ontology representation should be
exchangeable for interoperability among information systems across the product
lifecycle [90]. We can see that IGES and STEP have a common limitation in their
inability to transfer design intent, such as construction history and constraints.
Research efforts [52, 70] are increasingly devoted to this issue, but it has still not
been adequately addressed.

4 Feature Technology

Feature-based product modeling was traditionally used for geometrical construc-
tion with certain predefined templates, and most CAD tools embraced this
approach to facilitate interaction with designers. In this kind of CAD product
model, geometric features are the basic components for building up the shape: a
variety of features ultimately constitute a complete product in a hierarchical
structural model. A feature encapsulates the engineering significance of a portion
of the physical constitution of a part or assembly, and hence is important in
product design and definition for a variety of computer-aided systems [77].

Generally, the feature-based approach uses a set of basic features as a starting
point, then adds other advanced and user-defined features to enhance application-
specific knowledge encapsulation and process automation. Moreover, if features
are integrated with parameters and other features, they can be tracked. Numerous
research efforts have been devoted to the feature-based design approach [108].
Monedero gives a basic definition of the integration of parametric design and
modeling [63].

Ideally, when a feature’s parameters change in a feature-based system, the other
related features will be changed accordingly. This is the functional superiority of
such an associative feature approach as compared to other procedural approaches.
With the progress of feature technology, research has merged into two mainstream
methodologies: Design by feature (DBF) and Feature recognition (FR) [11, 79].

DBF is a design modeling method used for pattern-based functionality and
manufacturing geometric entities, in which the model is built in terms of features
provided by an existing feature library [1]. One of the major challenges in applying
the DBF method is that the limited and rigid definitions of available features

Features and Interoperability of Computer Aided Engineering Systems 153

www.manaraa.com

constrain the creativity of designers. It is also impossible to predefine all design
and manufacturing features.

FR is a method from an opposite perspective: instead of designing from fea-
tures, it aims to recognize features from an existing geometry model. This method
is mainly used for manufacturing purposes after CAD design models have been
created and before CAM tool path generation is applied based on said models. FR
is further elaborated in Sect. 5.1.

5 CAD/CAM Integration via Features

As yet there is still no consensus on a definition of a feature, but feature technology
has been widely applied in the integration between CAx systems, such as CAD/
CAM and CAD/CAPP [2, 109]. Feature-based CAD/CAM integration is a tech-
nology used to realize automatic transmission and conversion of product infor-
mation among CAD, CAPP, and CAM systems [29, 78]. While it is true that the
CAD/CAPP/CAM systems are at a maturation stage individually in their tradi-
tional functions; but because they have been developed separately, they emphasize
their separate functionalities. They use different data models and formats, which
severely inhibit product information exchange. (This problem is discussed in detail
in Sects. 2 and 3). In this section, we will focus on the conversion of a design
model to a manufacturing feature model using feature technology. A new trend of
CAD/CAPP/CAM/CNC application integration is introduced in detail as well.

At present, most commercial CAD software tools support both solid modeling
and feature-based modeling. A product model is usually constructed with the
convenience of geometric construction, with features available in the CAD
packages. When manufacturing processes are to be defined with the existing CAD
models, the challenge of data reuse occurs. The majority of CAM tools on the
market are feature-based, and certain specifically defined manufacturing features
have to be used to define the processes that enable associativity with cutters,
machine tools, jigs and fixtures, tool paths, and process conditions.

FR was the first challenge for feature applications in a domain based on CAD
technologies, even though so far significant progress has been made. When a
product is modeled simply in solids, FR is used to acquire engineering semantic
features, such as manufacturing features, from CAD models. When the CAD
model is created using a hybrid method of solid modeling and feature-based
modeling, FR is still necessary to identify the manufacturing features. This is due
to the fact that the design features will not be applicable in the manufacturing
model because of the different definitions between design and manufacturing
features and incomplete definition of geometry by design features. The interop-
erability problem between these design and manufacturing domains have been
commonly recognized in industry due to historical CAD/CAM technology evo-
lution. That is why FR plays a key role in feature-based CAM [34]. More elab-
oration follows in the next section.

154 Y. Xie et al.

www.manaraa.com

However, inherited problems also exist in the FR approach, due to the restrictions
of the hard-coded feature patterns to be recognized. To address the interoperability
issue among computer-aided solutions at the feature level, other techniques have
recently begun to emerge. In theory, with recent research progress in advanced
feature-based modeling scenarios, if the CAD model is created with well-defined
design features, there are two options. If the association between the CAD model and
the manufacturing model is not required, then the FR approach can still be applied to
generate manufacturing features from the resulting part solids. On the other hand, if
the associativity is to be kept for updating future changes, then feature conversion is
expected to map the design feature model to a manufacturing feature model. Feature
conversion is also further discussed in Sect. 5.2.

5.1 Feature Recognition

FR is an interpretation of a geometric model to identify features [10], and can be
achieved by the user interactively or automatically by algorithms. With the user-
driven approach, the user can select certain entities in the parametric model to
define a feature [108]. For example, a user will pick three imaginary faces and two
real faces to define a notch in the boundary representation (B-rep).

However, to realize complete CAD/CAM integration, automatic feature rec-
ognition (AFR) is necessary. AFR is the process of matching the parametric model
with the predefined generic features to identify features. Babic et al. [1] specified
three interrelated tasks which are necessary for AFR: geometric feature extraction,
part representation formation suitable for form identification, and form feature
matching. The specific tasks in this process are searching the database to match
geometric patterns; extracting recognized features from the database; determining
feature parameters; and completing the feature geometric model [77].

5.1.1 Rule-Based Methods

Rule-based methods) use production rules to depict features. The rules show the
necessary conditions for the elements in the model such as convexity, perpen-
dicularity, or adjacency. The expert system then uses these rules to perform the FR
[10, 34]. Rule-based methods) were the initial ideas for FR. However, they have
such obvious drawbacks that writing rules for all the features is a huge project and
recognition will consequently be very slow.

5.1.2 Graph-Based Methods

A common data structure for B-rep models is the graph [10], especially the face-
edge graph as shown in Fig. 7. Nodes represent the faces in the model and links of

Features and Interoperability of Computer Aided Engineering Systems 155

www.manaraa.com

nodes represent the edges between the faces. The properties of the links represent
the adjacency relations between the faces. In this way, the graph-matching method
realizes FR [34]. Graph-based methods are currently the most frequently used FR
technique, largely due to their efficiency. A variety of approaches with respect to
each task are classified in Table 4.

A comparison between DBF and FR is illustrated in Table 5. Although great
research effort has been spent in this field with a certain amount of progress, there
are still some limitations associated with feature technology. Especially among
computer-aided systems, a multiple view for engineers across different disciplines
is required to support interoperability. To further extend the capability of feature
technology in the enhancement of interoperability among different computer-aided
systems, some new technologies (such as associative feature, unified feature,

F2

F3 F4

F1

e4 e6
e1

e2 e3

e5

Fig. 7 Face-edge graph for
feature recognition

Table 4 Classification of AFR approaches [1 CiI]

Form feature extraction Pattern recognition

Geometric feature
extraction

Form feature identification

1. External approach 1. Syntactic pattern recognition Logic rules
2. Internal approach 2. State transition diagrams and automata

3. Logic (if–then) rules and expert
systems

4. Graph-based approach
5. Convex-hull volumetric decomposition
6. Cell-based volumetric decomposition
7. Hint-based approach
8. Hybrid approach
1. Graph-based approach Artificial neural

networks2. Face coding
3. Contour-syntactic approach
4. Volume decomposition

156 Y. Xie et al.

www.manaraa.com

multiple view feature, and semantic feature modeling) have been introduced, all of
which are covered in the scope of semantic modeling [8, 11, 19, 61].

5.2 Feature Conversion

Feature-based design is a relatively new approach for CAD/CAM integration [74].
For FR, it is a process that transfers low-level parametric models into high-level
features. If we set up the product model with features initially, the extraction of
features will be quite easy. There are several requirements for a feature modeling
system, as follows:

1. The system must be interactive and graphical, as this is the best way to support
the modeling system.

2. There must be a library for the storage of generic descriptions of features, and a
mechanism to create instances of features by specifying the features.

3. Constraints must be represented and maintained consistently to guarantee the
validity of features.

Design features usually consist of form features coupled with functions, design
intents,, and other design-related information. As mentioned above, manufacturing
features consist of special form features coupled with distinctive machining
operations and other manufacturing-related information [29, 30]. Such different
feature domains are supposed to be associative, to cater to constant change
throughout the product lifecycle; hence, after design modeling, there is a need to
convert the CAD feature model into a CAM feature model. Much research has
been dedicated to this conversion process [74], which can be divided into three
parts: form feature mapping, dimension mapping, and the mapping of other

Table 5 Comparison between design by feature and feature recognition in manufacturing

Advantage Disadvantage

Design by
feature [77]

• Rich information
associated with models

• Restricted design creativity by the feature
availability

• Real-time
manufacturability
evaluation

• Limited and specific features
• Complex and undefined features resulting

from feature interactions
• Concurrent design and

process planning
Feature

recognition
[53]

• No need for input feature
information

• Complex recognition algorithms
• Limited features to be recognized
• Input required for associated manufacturing

information
• No constraint to design

creativity
• Possible automatic

recognition

Features and Interoperability of Computer Aided Engineering Systems 157

www.manaraa.com

attributes such as tolerance or surface finish; more details can also be found in the
work of Gao et al. [29].

5.3 Feature Interaction

Most research in this area has focused on simple FR and conversion, while feature
interaction is often encountered in practice and causes difficulties in FR and
conversion. Some researchers have tried to recognize composite features as a
combination of simple features, but have not resolved the issue completely [69,
94]. Lee [55] concludes that are based on nine kinds of simple features: step, blind
step, slot, blind slot, pocket, hole, wedge, fillet, and sector, and brings out the
projective FR algorithm to recognize composite features. Gao et al. [30] propose a
mathematical description of the feature mapping process to solve the feature
interaction problem. However, all these works can only partially address the
problem, and feature interaction remains an extremely challenging research issue.

5.4 CAD/CAPP/CAM/CNC Integration

At the end of the twentieth century, most research effort had been put into the
integration of CAD/CAPP/CAM with the neutral file standard and feature tech-
nology. However, for a complete manufacturing process chain, the critical inter-
operable connection problem from CAD to CNC is still not fully solved.

In traditional CNC manufacturing, control is based on axis-movement
description programming techniques (G and M codes) [38] which cannot perfectly
support the advancement of CNC machines. Hence, machine manufacturers add
their proprietary instructions to the standard [105]. Consequently, there is a need
for specific post-processing programs for different configurations of CAM tools
and CNC machines, which is a big obstacle for the interoperability of CAM/CNC
applications. Furthermore, CAM systems add manufacturing-related information
to the design, such as machine processes, tools used, and operations. However,
after post-processing, the output files are NC programs, which are only machine-
interpretable by CNC machines. The result is that the date translation is a one-way
process, involving huge information loss [99].

STEP greatly helps the CAD/CAPP/CAM integration process, and STEP-NC
has been developed with the aim of better CAM/CNC integration. STEP-NC is a
standard specifically for NC programming, helping to achieve the goal of a
standardized CNC controller and NC code generation facility. This standard has
two notable advantages: first, STEP-NC is vendor-independent: if the vendors
accept this standard, then a neutral data is achieved for exchange; second, STEP-
NC files have the data regarding ‘‘what to do’’ instead of ‘‘how to do,’’ which are
easily accepted by different intelligent CNC controllers [99]. There are three types

158 Y. Xie et al.

www.manaraa.com

of STEP-compliant CNC: (1) conventional control; (2) new control; and (3)
intelligent control [92, 105].

For conventional control, STEP-NC translators read the STEP-NC file and
output an NC file, which is similar to post processing. It has achieved partial
interoperability, as different configurations can be connected using the same
neutral file. With this method, the CNC machines do not need to be retrofitted [92].
The new CNC controllers can process the STEP-NC file inside the CNC machine
and then convert it into NC programs which consist of G and M codes. At present,
this method does not have many intelligent functions, and most researchers are
building the CAM/CNC integration in this way [91, 106]. Xu and Wang [104]
proposed a G code-free machining procedure. In their system, the CNC controller
will make full use of the information stored in the STEP-NC file, such as the work
plan, work step, machining features, and cutting tools, to work out the NC codes
using its own programmable control language.

Intelligent control is the most promising type for STEP-compliant CNC. As
both design and process plan information are stored in the STEP-NC file, many
intelligent functions can be achieved by the CNC controller [105]. Suh et al. [91,
92] have developed a new CNC controller called STEP-CNC. It uses the STEP-NC
file as input and can realize intelligent machining control functions, such as
decision making for unexpected changes, program validation at the time of exe-
cution, monitoring, and recovering.

6 CAD/CAE Integration

CAD systems are commonly used for modeling the geometry of a product with a
variety of tools; CAD geometry is used as input for FEA in CAE. CAD and CAE
data models are always different from one another, due to the nature of the
operations they carry out. In order to decrease the length of the product devel-
opment cycle, the integration of CAD and CAE is in high demand; numerous
efforts have been made in recent decades. Ideally, the integration of CAD and CAE
will efficiently decrease the design cycle time, reduce cost, and simplify the fine-
tuning process for the product; Gabbert and Wehner did a feasibility study on
CAD/FEA integration as early as 1993 [28], and many researchers continue to
work toward a seamless integration of CAD and CAE systems, without yet to
achieving a satisfactory result. Gordon [31] summarized CAD/CAE integration
into three approaches: geometry conversion, CAD-centric geometric modeling,
and CAE-centric geometric modeling.

In the geometry conversion approach, CAD geometry is used and then con-
verted into simulation mesh geometry. In this approach, the same geometric source
is used in both design and analysis. However, this type of integration can only be
used with simple parts, such as pipelines.

The second approach uses a CAD-centric geometric model. In this type of
integration, the CAD solid models contain too many details that are not suitable for

Features and Interoperability of Computer Aided Engineering Systems 159

www.manaraa.com

the CAE-required abstracted models. There thus needs to be an idealization pro-
cess that includes detail removal and dimensional reduction. Currently, the ide-
alization process is a major obstacle for CAD/CAE practice. However, due to the
ease of access to the modern 3D feature-based CAD technology, researchers tend
to use this type of integration.

The third approach can be classified as a CAE-centric geometric model. The
simulation model is built first, and is based on the design concept and analysis
method. After analysis, verification, and modification of the simulation feature
model, designers are to work out full details and manufacturing features to support
downstream process planning. This type of integration is recommended by Gordon
but requires analysts to know upfront about the product’s function details.

The subsections below are intended to introduce the key technologies and
remaining problems related to integration. First, data interoperability issues
between CAD and CAE are discussed, followed by an introduction to geometry
transformation practice. Recent feature-based integration research is also reviewed
in detail. The basic concepts of three specific methods—the multimodeling
method, common data model method, and analysis feature method—are intro-
duced along with the visual framework structures. The benefits, technological
improvements, and limitations of these three methods are discussed as well.
Though the feature-based product method for CAD/CAE integration is in devel-
opment, there are still some gaps to be filled.

6.1 Data Interoperability Between CAD and CAE Systems

Many researchers have tried to build an integrated CAD/CAE data model. Re-
mondini et al. [73] developed a unified data model supporting both design and
structure analysis activities, which can build the bridge between the CAD model
and CAE analysis. However, this model is restricted to the treatment of linear
analysis. For interoperability, Foucault et al. [26] recommended using a polyhedral
model as a transitional model between CAD and the finite element method (FEM).
However, this method has to modify and update the product design model
repeatedly during the product development evolution.

Semantically, data is the lowest level of information, which is used in software
to represent different kinds of information in product design. STEP standard AP
209 provides a means to build an integrated model, including nominal geometry
(CAD), various idealized CAE geometries, and associated FEM analysis models
and results, along with PDM and separate version control [48]. Users can cus-
tomize the combination as needed. Liang et al. [58] raise the idea of using an
integrated product data-sharing environment (IPDE) based on STEP, to allow
CAD/CAM/CAE programs from different vendors to share data conveniently. This
model is mainly based on several STEP application protocols: AP 203, 209, 214,
and 224. Among these, AP 203 specifies data structure definitions for the con-
figuration-controlled 3D designs of mechanical parts and assemblies, while AP

160 Y. Xie et al.

www.manaraa.com

209 supports the design elements through analysis of composite and metallic
structure. However, implementation of STEP in CAD/CAE integration is still
limited, because STEP has mainly been developed for CAD/CAM integration.

6.2 Geometry Transformation for CAD/CAE Integration

A common platform that can contain information from both the CAD and CAE sides
has been a popular research topic since the early 1980s. Early research mainly
focused on the idealization of CAD models and automatic mesh generation. A
workflow of the CAD/CAE integrated modeling method has been suggested by Li
et al. [57], as shown in Fig. 8. CAD models are usually set up to satisfy requirements
for design, process planning, and manufacturing [23] and therefore usually contain
too many complex details for CAE analysis. Hence, the models need to be idealized
before they can be subjected to CAE application. In most cases, the idealization
process will not affect the accuracy of the analysis but can reduce analysis time
significantly. There are two main methods for CAD model idealization: CAD detail
feature simplification and dimension reduction [5, 23].

6.2.1 CAD Detail Feature Simplification

Detail simplification is the process of removing those unnecessary detail design
features that do not affect analytic accuracy or mesh quality but do increase
analysis time. Detailed features refer to the small shape features of the product
model, such as small fillets and minor local ribs. Usually, these small features have
little influence on the analysis result compared with the overall parameters of the
model. Ji et al. [49] group the detailed features needing to be removed into a
number of types, including chamfer features, edge blending features, thread
features, groove features, holes features, pad and boss features, and slot features.

Fig. 8 CAD/CAE integrated modeling scheme [57]

Features and Interoperability of Computer Aided Engineering Systems 161

www.manaraa.com

To remove these features automatically, a simplification processing module must
be built, for which functions include unwanted detail FR, selection, removal, and
recovery. The process involves three steps: searching all the features in the model,
determining the parametric information of the features by feature recognition, and
carrying out rule-based simplification.

6.2.2 Dimension Reduction

In CAE systems, wireframes are used to represent beams and sheets for plates and
shells. This kind of representation requires a process of abstraction. The mid-
surface approach is suggested for this abstraction [24, 72], which usually involves
three steps:

• Face judgment. Judge whether the two planes of the model can be faces. If yes,
then the mid-surface is created between the faces.

• Mid-surface modification. This step modifies the mid-surfaces by removing
those small facets that have little effect on the analysis results.

• Extend and seam. The mid-surface model is completed as a whole with
extension and seaming of faces.

Currently, the idealization process still requires human interaction, while
automatic mesh generation is realized by most commercial CAE tools [23, 27].

6.3 Feature-Based CAD/CAE Integration

As mentioned above, all three of the methods proposed by Gordon [31] require two
separate models for one product, to the severe detriment of efficiency. Moreover,
there are only geometric connections between these two models. The connections
are thus a one-way process, and some semantic information needed for CAE
analysis is lost [23]. Recently, researchers have been trying to develop a unified
data model and concurrent modeling environment for seamless CAD/CAE
integration.

Kao et al. [50] recognized that most of the feature models can be used in both
CAD and CAE software, including geometric and non-geometric features. In their
work, the changes propagated from CAD model to CAE model appear to be
automatic. In fact, all the related CAD parameters had to be recalculated
beforehand and exported into a spreadsheet, and the corresponding changes in the
CAE model had to be made interactively. Chen et al. [16, 17] discuss semantics in
information entities, relations, and constraints in each phase, and generalized
common entities in order to develop a consistent product information model. In the
course of their work, they then created a conceptual framework by applying the
unified feature concept for CAD and CAx model integration [17].

162 Y. Xie et al.

www.manaraa.com

Features, a form of well-defined data structure expressing engineering patterns
associated to geometric entities and relations, are recognized as the basic and
essential entities for product model design and interoperability between different
types of software, such as CAD and CAE software. However, the feature asso-
ciation of design models between CAD and CAE is considered to be the main area
of difficulty in terms of integration. For example, design form features used in
CAD are usually represented geometrically, while features used in FEM have
mesh and material data, which are derived from the imported CAD geometry
without considering design features. These different types of features are easily
confounded can cause mistakes in the design updating phase.

Multi-model technology (MMT) introduces object-oriented technology (OO)
into the product modeling process and combines OO with feature-based modeling
technology. It utilizes OO to create the object model of a product and uses feature-
based modeling technology to build the model of an object. In this way, it can
sustain system-level modeling along with design-level modeling. Because the
object model consists of multi-models, it is called MMT [107]. The object model
of the product is a multi-model structure (MMS), consisting of a finished part
model level (assembly model level), a rough part model level (part model level), a
function model level, and a basic model level [107]. Every model in the MMS is
created by feature-based technology in the design process. With the help of MMS,
CAD engineers and CAE engineers are expected to work concurrently, and the
integration of CAD and CAE can be achieved. Figure 9 shows a visual structure of
CAD and CAE interaction processes.

Lee [56] contributed to a feature-based multi-resolution and multi-abstraction
modeling approach. This technology is realized using techniques such as

Fig. 9 The integration of CAD/CAE in MMT [107]

Features and Interoperability of Computer Aided Engineering Systems 163

www.manaraa.com

design-by-feature, non-manifold topological (NMT) modeling, multi-resolution
solid modeling, and multi-abstraction NMT modeling. The CAD and FEA models
are built up simultaneously into a unified master model, in which design and
analysis features are embedded; this research supports the buildup of CAD and
FEA models at multiple levels. There is a drawback to this method, however:
boundary conditions such as load and displacement conditions cannot be trans-
ferred from CAD models into CAE models automatically.

With feature-based technology, if a product needs to be modified, a synchro-
nization mechanism can be developed to update the FEM model with persistent
connections between the CAD model and the CAE model. This could mean sig-
nificant benefits for the product development process. However, this feature-based
approach also requires higher knowledge and skill competency for the analysis
engineers, who must initially extract useful analysis features from the CAD model
to create the associated CAE model. The CAE engineer needs to give specific
working condition definitions for such analysis features in the early stage.

Following the development of feature-based methodology, Gujarathi and Ma
[33] tried to integrate CAD and CAE models using a joint data structure called a
common data model (CDM). This CDM consists of semantic design parameters
used in three ways: building the CAD model, building the FE analysis mesh
model, and performing engineering analysis functions with the assistance of
knowledge-based algorithms and software APIs. Figure 10 shows the basic con-
cept of CDM [33].

Fig. 10 General working
aspects of CDM [33]

164 Y. Xie et al.

www.manaraa.com

In the proposed method, the CDM is initially generated by an engineering
concept calculation module which works out the key driving parameters within the
engineering project scope. The CDM is used to store the initial conditions and final
results of the engineering conceptualization result in parameters and their con-
straints. In this conceptualization procedure, basic physics/chemical principles are
implemented and verified.

A structural designer then constructed the CAD models by retrieving templates
from a part and assembly library; the templates provided input for design
parameters, and defined the assembly relations among parts.

Third, product’s FEM geometry information, based on the analysis feature
information that was already embedded in the CAD templates, was constructed
automatically in the CAE system. Since 1990s, a feature-centric CAD/CAE
integration approach has been developed by a number of researchers [56, 57, 82,
110]. In an early effort [82], a part library with built-in analysis features was first
established by an expert CAE engineer. In the proposed method [32, 33], geo-
metrical CAE meshes are generated in sequence using an automatic meshing
technique. The meshes of features are ultimately combined into a complete mesh
model for the product, which is guaranteed by a structure-combining algorithm.
Finally, CAE analysis is automatically carried out and the results are also recorded
in the CDM.

This method offers centralized design parameters and data for CAD/CAE. The
CDM method for CAD/CAE integration has two specific advantages. First, it
supports parametric design and analysis in the integrated CAD/CAE environment.
Second, CDM updates its parametric data dynamically over the processes involved
in design consolidation. The content parameters in CDM largely belong to three
general categories: geometric, non-geometric/functional, and intermediate design
parameters. The structure of the CDM is shown in Fig. 11 [32].

The approach can also be extended to include engineering rules used in various
models. These rules can then be consistently applied to multiple domains. Such a
centralized ‘‘control board’’ enables an enhanced control mechanism that offers the
flexibility of adopting and changing a variety of design codes, standards, and
expertise in the cycle of design procedures. As a kind of parametric data model,
CDM data can also be further customized to incorporate manufacturing
requirements.

Although quite flexible, the proposed method has some limitations. The most
difficult task in the initial phase of parametric CAD modeling is the associative
relation model development. The initial identification of parameters and the logics
of different kinds of relationships require considerable programming and set-up
effort for automatic model generation and updating.

Further, the design procedure in the terms of computer system operations has to
be fully defined beforehand in consideration of building the CAD and CAE
analysis models with logical constraints. Therefore, the proposed method offers
long-term efficiency only for those well-established, generic, and set design
problems [33]. Efficiently or expeditiously conducting simulation for the testing of
candidate solutions and demonstrating design scenarios for provisional customers

Features and Interoperability of Computer Aided Engineering Systems 165

www.manaraa.com

can be problematic because of the ad hoc procedures involved and the short
response time required.

The authors believe the CDM integration approach [32, 33] has two contri-
butions. First, the method abandons an oft-required feature reformation process
(from CAD to CAE) that is still technologically immature, and instead binds the
analysis features within the parameterized CAD model [82, 110]. More progress
has been made to improve the reliability of obtaining the analysis feature from the
CAD model [57]. Second, automatic mesh generation based on analysis features is
a straightforward technique. The meshing method improves the quality of the
mesh model. The improved method leads to better analysis results and shorter
simulation time. In addition, more complicated component shapes and assemblies
can be managed.

This common data model involves only the preliminary design and is limited to
sizing and the essential operational concepts. Refinement of the model by adding
more design features has to be carried out before it can be usable in day-to-day
industrial applications.

Fig. 11 Structure of CDM with the progress of the design process [32]

166 Y. Xie et al.

www.manaraa.com

7 Toward Feature-Based Integration and Interoperability
in Chemical Process Engineering

The complexity of chemical process design and engineering requires engineers to
work collaboratively across disciplines. Existing software tools have allowed
engineers from disparate domains to deal with the complexity embedded in each
specific domain. However, interoperability of the heterogeneous data generated by
different tools remains a problem [62]. This reality highlights the urgent need to
integrate the software tools involved in any given chemical process project to
enhance interoperability, not only on the levels of syntax and structure, but also on
the semantic level. As should be clear from the technology reviews in previous
chapters, semantic modeling and feature technology have been adopted by
researchers to construct a variety of integration frameworks. This section proposes
one such framework, under which the semantic feature associations between two
domains are analyzed and a new, more efficient design process is proposed based
on the concept of collaborative engineering. A case study further demonstrates
how the framework functions, and allows engineers from different domains to
work collaboratively within it.

7.1 Integrated System Architecture for Chemical Process
Engineering

The common project engineering practice in chemical process development
involves multiple disciplines, such as chemical process engineering and
mechanical engineering. Ideally, the engineering design efforts should be coor-
dinated coherently, with close interactions among relevant disciplines due to their
heavy dependency on one another. Traditional discipline-centric engineering
practice and the relevant engineering software tools are becoming outdated,
because networked computer information technology has made interdisciplinary
collaboration much easier. To address this kind of industrial demand, the authors
have proposed a system integration architecture [103] based on a common
framework of semantic modeling and feature technology, and consisting of dis-
ciplinary modules such as mechanical and process design modules. The centrally
unified feature management system (a common base module) consists of a product
feature module and a process feature module, which are built on top of a net-
worked federation of data repositories representing different disciplinary domains.

The improvement of the proposed semantic integration framework over the
individual disciplinary engineering approach is that it incorporates semantic
interoperability. The feature information will be retrieved from the files or dat-
abases generated by different domain software tools and mapped onto a central
database according to the relevant semantic schema and a generic mapping
mechanism. Based on the data collected, the central unified feature management

Features and Interoperability of Computer Aided Engineering Systems 167

www.manaraa.com

system will generate a view according to domain-specific schema and display it to
the domain-specific engineers through their respective user interfaces. An ontology
library and a knowledge library have been developed to support semantic feature
mapping. As shown in Fig. 12, Module 6, the central unified feature management
is the core of the system, maintaining and validating all the features according to a
unified scheme with the related mapping mechanism, and managing view gener-
ation and updates. In addition, a standard feature library can be established using
the generic data feature structure specified by Xie et al. [103], which will facilitate
semantic feature mapping and also reduce the modeling workload of mechanical
engineers.

Due to space constraints, the framework provided here lists only a few of the
software tools involved in chemical process engineering. There are more software
tools used in industry, however, and these vary from company to company.
Extensive software tools have been developed and applied in chemical process
engineering as well. Within this framework, whenever a new version or a com-
pletely new software tool is created, only one new ‘‘translator’’ needs to be added
into the shared interface library. This leads to a considerable decrease in the
development efforts needed, as compared to merging different modeling schema
into an integrated schema [4].

Fig. 12 Integrated system architecture [103]

168 Y. Xie et al.

www.manaraa.com

7.2 Semantic Feature Associations Between Process
Conceptual Design and Mechanical Detail Design

The first challenge in facilitating semantic integration in chemical process engi-
neering is to identify the semantic feature association among the phases of the
lifecycle [60]. The activities involved in chemical as well as mechanical process
engineering and design lead to the generation of domain-specific features. These
features are classified, as suggested by Han [35], into two categories: chemical
process conceptual design features (CPCDFs) and mechanical detail design fea-
tures (MDDFs), as shown in Fig. 13. CPCDFs are the features created in the
chemical process conceptual design and engineering phases, which are designed to
satisfy the requirements of the chemical process projects, as in, for example, the
capacity of a chemical plant under construction. The parameters involved in
CPCDFs can be mapped to the constraints, which will influence the downstream
mechanical detail design [60]. MDDFs are the features created in the mechanical
engineering and design phase to satisfy the requirements and be subject to the
constraints stated in the process conceptual design. The specification of the
equipment design will in turn place constraints on the process conceptual design.
These mappings are implemented by knowledge-based reasoning, as shown in
Fig. 13.

The semantic associations between feature parameters that are associated with
equipment engineering and design are shown in Fig. 14. The corrosion allowance
constraint (CAC), temperature (T), pressure (P), and residence time (RT) can be
considered by the input and output parameters, which are specified based on the
project requirements during the conceptualization phase [33]. Further, the shell
thickness constraint (STC) is derived by T and P. The flow rate (Fr) is calculated
based on the capacity (Cap) requirement and diameter of piping (DP), which will

Conceptualization

Material Blance
Unit Operation
Capacity

Equipment

Product Contac t Material
Non-Product Contact Material
Material Finish
Dimension
Shell
Nozzle

Position
Dimension

Design Pressure
Design Temperature
Geometry
Roundings
...

Mechanical Design FeatureProcess Design Feature

Conceptual Design

Flow Rate
Residence Time
Design Temperature
and Pressure

Process Engineering

Optimized Operating
Temperature , Pressure
Material s In & Out

Knowledge -
Based Reasoning

Ontology
Library

Shared
Vocabulary

Knowledge
Library

Inference
Rules

Fig. 13 Semantic feature associations between process design and mechanical design

Features and Interoperability of Computer Aided Engineering Systems 169

www.manaraa.com

further determine the capacity-of-equipment constraint (CEC). And with DP alone,
the diameter of nozzle constraint (DNC) is identified and will further determine
that diameter of nozzle (DN) should be equal to the DNC. Meanwhile, the
equipment’s shell thickness (ST) and capacity-of-equipment (CE) should be larger
than the STC and the CEC, respectively, while product contact material (PCM),
non-product contact material (NPCM), and finish material (FM) are identified by
the CAC. Further, mechanical engineers will work out the dimension (D) and
geometry of the equipment, which determines the dimension constraint (DC).
Similarly, DCs are used to describe the relationship between the position of nozzle
(PN) and those position-of-nozzle constraints (PNC). Lastly, the DP is identified
based on the piping design (PD), which is influenced by the DC and the PNC.

The mechanical design features associated with the chemical process concep-
tual design features should be kept consistent by implementing an active checking
mechanism known as the ‘‘association’’ [33]. This has to be implemented in two
ways. Each CPCDF and its properties are mapped to constraints specified for
mechanical design, and any later changes in the CPCDF will be reflected in the
update of the constraints, which will further influence the parameters in the
MDDFs. Similarly, further design changes by mechanical engineers within
MDDFs will update those related constraints that are mapped from the CPCDFs;
then the constraint changes will trigger CPCDF updates. If there is any constraint
conflict emerges during the updating process, the change will be hold up, and a
report generated for engineers’ review in order to determine the next step of the
reasoning path.

7.3 Proposed Workflow Under the Integrated Framework

Conventionally, chemical process design and mechanical design work are
sequentially coupled with verbal consultations between engineers. After the pro-
cess design engineer works out the process specifications, mechanical detail design

CapMin

FrRTPT

Mout

CAC

PM NPM FM

DP

STC CEC DNC

DN PN

PNC

CES Dim

DCConstraints

PD

Fig. 14 Semantic associations of feature parameters and constraints

170 Y. Xie et al.

www.manaraa.com

begins. However, this second stage is often delayed by several iterations of the
process conceptual design modification. The specifications of the mechanical
design may then require that the process conceptual design again be changed,
especially when ‘‘non-standard’’ equipment is applied. However, changes to the
process design will also lead to adjustments in the specifications of equipment and
hence of the mechanical design [19]. Several iterations of both phases are usually
needed before the process design and mechanical design are finalized. The work
associated with these iterations is tedious, time-consuming, and error-prone. It is
difficult to maintain consistency, as engineers’ work during iterations will often
conflict with those constraints defined in earlier cycles, without the engineers
noticing [4, 21]. An example is shown in Fig. 15 [4].

To reduce the amount of time spent on interdisciplinary collaboration during
design phases, a new design process is proposed here by the authors based on
collaborative engineering principles under an integrated framework, as shown in
Fig. 16. For example, given a capacity expansion project in chemical engineering,
the project scope and reusability of knowledge are first determined; the material
balance and operation capacity are identified in the conceptualization based on the
project requirements. Instead of working sequentially in the conventional design
process, conceptual design, process engineering, and mechanical design are now
implemented in a concurrent and collaborative environment. The associations
involved are supported by a systematic knowledge-based reasoning procedure
[101]. Meanwhile, engineering constraint checking should be implemented to keep
designs originating from different domains consistent. If the design change is
rejected by the constraint checking module, the engineer can retain the most recent
valid model while trying another round of iterations to reach a new solution. In this
collaborative work environment, the likelihood of redesign, as well as workload, is
greatly reduced. Furthermore, knowledge will be extracted from the complete
project case and added to the knowledge library for future reuse after the project is
complete.

P&ID first
pass

P&ID second
pass

P&ID
released
version

Equipment specification complete

Equipment specification adjusted

Design modification requiredFig. 15 Iteration of
modifications in the
conventional design process
[4]

Features and Interoperability of Computer Aided Engineering Systems 171

www.manaraa.com

7.4 Case Study

An example of the integrated system is shown in Fig. 17. Figure 17a shows the
process and instrumentation diagram (P&ID) of the process based on its process
flow diagram (PFD). Both the PFD and the P&ID are created with the concep-
tualization of design intent which can be expressed with a set of associated
attributes. Such Attributes can be retrieved from a central database according to
the project requirement analysis. The P&ID specifies the equipment, instrument,
key piping, process control schema, and so on. For the downstream mechanical
detail design, there is too much irrelevant and incomplete information, as only
those equipment characteristics that are significant from the process point of view
are specified. However, all of this information will be mapped onto the central
database. With this information, as well as other information mapped from, for
example, the PFD, the ‘‘standard’’ equipment can be selected from the equipment
library, as shown in Fig. 17b. However, sometimes custom-designed equipment
will be needed. In this case, the mechanical engineer can work on similar

Conceptualization

Conceptual
Design

Process
Engineering

Project Requirement

Mechanical
Design

Knowledge-
Based

Reasoning

Design Complete

Project Engineering
Database

Knowledge Library

Accetpted?

Knowledge Extraction

Knowledge Reuse

Enginneering
Constraint
Checking

Yes

No

Project Complete

Data flow

Activity flow

Fig. 16 Proposed design process flow under an integrated framework

172 Y. Xie et al.

www.manaraa.com

equipment and just make some minor modifications. During this process, the
knowledge library will provide data support.

However, there is again too much detailed and mechanically relevant infor-
mation included in the solid model shown in Fig. 17b, such as small chamfering or
filleting parameters embedded in the design features. Should the full solid model
be transferred to process engineers or added to the process design model directly, it
would cause a network burden with unnecessary information being transferred,
and would also confuse the process engineers. Instead, a process engineering and
design view, which has been tailored to include only the tank’s process features, is
generated according to the view definitions. This process view presents only
process engineering feature properties, such as operating pressure, capacity, key
dimensions, and other process-related attributes, and they will be further refer-
enced in the process model as external data resources. Thus, the tank generated in
Siemens NX shown in Fig. 17b is mapped to the tank in the pink wire frame in
SmartPlant 3D, as shown in Fig. 17c.

8 System Architecture for Interoperable Network-Based
Engineering Systems

Competition in global marketing forces companies to develop products in the
shortest time with the highest quality. Collaborative engineering aims to shorten
the length of the product development process. In collaborative engineering, tasks
can be performed by engineers who are both spatially and temporally distributed.
Two critical technologies help to realize collaborative engineering: web technol-
ogy and agent technology.

8.1 Web Technology

Web technology enables centralized information integration through a shared web
server and a central database [81]. It usually uses the client–server architecture to
realize communication between those servers and distributed developing teams.
Ideally, the collaborative engineering system will be web-based, semantics-
enabled, comprehensive, and agent-based [36, 81].

Critical issues about web-based engineering systems need to be tackled. Expert
systems tend to use a variety of software tools and computer systems. The system
should therefore have the ability to support heterogeneous computer applications
and data sharing. Distributed object technology such as the Common object
request broker architecture (CORBA) and DCOM/ActiveX can solve these prob-
lems [68, 83]; the details of data exchange have been discussed in earlier sections.

Features and Interoperability of Computer Aided Engineering Systems 173

www.manaraa.com

Fig. 17 An integrated system: a P&ID, b the 3D solid model generated in Siemens NX, and
c the 3D model generated in SmartPlant

174 Y. Xie et al.

www.manaraa.com

For collaborative design, multiple teams often work with the same model for
different disciplinary purposes; hence, conflicts occur frequently. There has to be
some rules for decision making. For instance, the system should notify those
engineers in charge about the conflicting constraints and to the engineers make
decisions via negotiation to resolve conflicts; sometimes multiple solutions exist
simultaneously.

Web technology can only satisfy the data communication and exchange
requirements of collaborative engineering systems. There are interwoven intel-
lectual exchanges of opinion, consultations, and compromises that need complete,
accurate, and sustainable information models instead of web technology alone.
Further, the product-related data should be complete and can be translated into
different application models; designers must have access to the complete design
model if required to visualize, manipulate, and retrieve all the geometry and the
semantics of the design, and negotiate modifications. It is also better for the
collaborative engineering system to have flexible and modular architecture, and
agent technology is useful in facilitating automatic process flow management
requirements. Thus, ideally, the collaborative engineering system will be web-
based, semantics-enabled, comprehensive, and agent-based [36, 81].

8.2 Agent Technology

Agents are programs acting for a user or another program under predefined con-
ditions. The aim of Agent technology is to integrate heterogeneous, distributed,
and semiautonomous knowledge-based software tools into a collaborative appli-
cation [54]. There have been numerous efforts to develop agent-based collabora-
tive engineering systems. Palo Alto collaborative test bed (PACT) is one of the
earliest CE web-oriented platforms satisfying multiple sites and various disci-
plines. PACT is agent-based and allows agents working on different aspects of
design to share and exchange information with one another [22]. Agent interaction
relies on three elements [22]: shared concepts and terminology for communicating
knowledge across disciplines, an interlingua for transferring knowledge among
agents, and a communication and control language that enables agents to request
information and services. Shen and Barthes [80] have developed a prototype of a
distributed intelligent design environment (DIDE) in which the internal structure
of an agent and the inter-agent communication mechanism are illustrated in detail.
The internal structure of an agent is shown in Fig. 18.

8.3 Multi-Agent Systems

A web-based interoperable engineering system is composed of various engineering
software tools that rely on different principles. In such systems, multi-agent

Features and Interoperability of Computer Aided Engineering Systems 175

www.manaraa.com

technology is more suitable and makes the systems more flexible. As each agent is
coupled with a certain function and a well-defined application program interface,
the engineering system can change its configuration based on practical require-
ments. At the same time, agent modules can be reused in different systems [54].

Wang et al. [100] have developed a distributed multidisciplinary design opti-
mization (MDO) environment that supports seamless interaction between
designers, agents, and servers. The architectural framework for MDO environ-
ments is shown in Fig. 19. Hao et al. [36] have developed a lightweight agent
framework for mechanical product design by applying intelligent software agents,
Web, workflow, and database technologies. The framework developed is com-
pliant to Foundation for Intelligent Physical Agents (FIPA) standard, called
autonomous agent development environment (AADE).

8.4 System Architecture

For the agent- and web-based interoperable engineering system, the target is to use
software agents to reduce reliance on large, complex, centralized systems and to
efficiently facilitate collaboration.

Fig. 18 Internal structure of
an agent [80]

Fig. 19 Architectural
framework of integrating the
internet, web, and agent
technologies for MDP
environments [100]

176 Y. Xie et al.

www.manaraa.com

Ulieru et al. [95] describe three layers of the system architecture: a low-level
inter-networking communication support layer, a coordination layer (managing
inter-agent cooperation through intelligent conversation/communication mecha-
nisms), and an agent layer consisting of five categories of agents: interface, col-
laboration, knowledge management, application, and resource agents.

In this section, a unified feature model is applied as the system modeling basis
to realize interoperability. A simplified architecture is proposed, as shown in
Fig. 20.

8.4.1 Web Server

The web server contains an interface agent (IA), security manager, and session
manager. The IA provides shared access for multiple users. It can instantiate
different data for different users according to the users’ requirements. The security
manager is used to check whether the user has the right to access the product

Fig. 20 A system design for agent-based engineering collaborations

Features and Interoperability of Computer Aided Engineering Systems 177

www.manaraa.com

model data, and what kind of access it is. Users are separated into several groups,
each with different access rights. All management data are stored in the database.

The system supports shared access for multiple users, so a comprehensive data
management system is designed for maximum concurrent access to the data.
Access to data is mainly managed by the session manager. If multiple users with
different priorities require the same data, the user with highest priority will get
access to the data while other users have to wait (i.e., can only view the data) until
his or her session is finished. If multiple users with the same priority require the
same data, it follows the ‘‘first come, first served’’ principle: other users remain on
a waiting list and can only view the data [9, 93].

8.4.2 Agent-Based Design

The inner IA is a bridge between the project manager and other agents. The project
manager assigns new jobs and manages on-going job progress through the inner
IA.

The engineering server agent (ESA) is the brain of the Agent-based design
system. It communicates with the job manager to accept jobs and manages mes-
sages, then manages the data flow to operate the system. Its functions include
transferring data files to and from the database, assigning jobs to job agents, and
validating the finished design.

The job agent (JA) is responsible for automatic task arrangement. In the Agent-
based design system, a design job is composed of job ID, task ID (which is formed
following the task sequence), job parameters, and task files. When a new job enters
the JA, the JA can automatically distribute tasks to the appropriate available
designers following the task sequence.

8.4.3 Working Procedure for Agent-Based Design

1. The project manager gets access to the inner IA to give a new job to the system.
2. The ESA gets the message from the project manager and starts the function

‘‘starting job#.’’ It then reads the job data from the database and transfers it to
the JA.

3. The JA receives the imported data and assigns specific tasks to various
designers. Tasks will be arranged following predefined sequences.

4. When a job is finished, the finished design files are sent back to the ESA. The
JA sends the design to the problem solver to be validated. If there is no failure,
the design data is stored in the database and the job status changes to ‘‘fin-
ishing-job#.’’ However, if there is a defect, the process will go back to step 3
[36].

178 Y. Xie et al.

www.manaraa.com

8.4.4 Downstream Application Management

To realize collaborative engineering, the collaborative design system needs sup-
port from many collaborating functional modules, which can provide services
through agents as well. For example, features are managed by a feature agent.
Other downstream applications can also be consolidated by an administrative
downstream application management agent for their services or interactions.

The feature agent can provide feature objects for application packages and
separate application packages for discrete users, so that users can use specific
feature models for certain downstream applications. The feature agent has the
functions of FR, feature extraction, and feature modification. The feature agent can
also receive feedback from users and process it. Every time the feature agent
modifies the feature model, it will call the constraint solver and the geometry
modeler to validate the modified feature model. The constraint solver can check
the validation of all constraints, which are part of the feature definition. The
geometry modeler can validate feature geometry. Finally, the unified feature
model in the database will be updated.

8.4.5 Database

The database provides physical storage for all kinds of data, including product
model data and security management data. Geometric data and the unified feature
models are stored within the database. The unified feature models are composed of
various generic feature models, which are stored as data elements across tables
[18, 19]. In this manner, the database manager can reorganize these data elements
for flexible use by different applications [93].

9 Information Views, Granularity, and Knowledge-Driven
Engineering

9.1 Information Granularity

Granularity is the extent to which information is broken down into small com-
ponents of computer system entities. Coarse-grained information model consists of
fewer and larger components than fine-grained model. Granularity becomes an
important issue for data modeling when trying to represent levels of information
with data structures across systems or databases [25]. In practice, information can
be granulated into four parts, as shown in Fig. 21.

Data. The most-granulated information type is data. Data as an abstract concept
can be viewed as the lowest level of abstraction from which information and then

Features and Interoperability of Computer Aided Engineering Systems 179

www.manaraa.com

knowledge are derived. Data on its own carries no meaning. For data to become
information, it must be interpreted and take on a meaning.

Object. Objects can be thought of as wrapping their data within a set of functions
designed to ensure that the data are used appropriately, and to assist in that use. The
object’s methods will typically include checks and safeguards that are specific to the
types of data the object contains. An object can also offer simple-to-use, standard-
ized methods for performing particular operations on its data.

Feature. A generic feature representation in a database can be expressed as
shown in Fig. 22 [93]. A feature has feature_id, product_id, and domain as its
attributes. The feature_id attribute is an object identifier, which can uniquely
identify a feature object in database. Product_id specifies which product a particular
feature belongs to. Domain is a predefined data type, which can be instantiated for
design, manufacturing, or analysis, and their relevant setting parameters are stored
in a domain table. A feature will also contain a list of referenced entities, a list of
constraints, and a list of parameters. Dimensions and tolerances are regarded as
subtypes of constraint bounded to certain geometrical entities.

Knowledge. Knowledge-based engineering (KBE) is OO and rule-based, where
knowledge is the object and rules are the operations. Features can be a part of the
knowledge, and rules are responsible for the reasoning and mapping of the features.

9.2 Information View

An information view is a selective set of information that is specially filtered for a
purpose. As shown in Fig. 23, the functional view can be designed or implemented
with a specific purpose and scope as well.

The design of user-specific and need-based information views plays a significant
role in the integration of CAx applications. These views are context-dependent
interpretations of self-contained subsets of information about the entire product
model (EPM). With STEP technology, all of the functional views can be expressed

Knowledge

Features

Objects

Data

Fig. 21 Information
granularity

180 Y. Xie et al.

www.manaraa.com

with the same language, EXPRESS, and an arbitrary view can easily be translated
into other views. Building a common product model representation is crucial to
achieving different functional views. EPM describes information across applica-
tions, and contains the domain classification ontology and metadata. In practice,
application feature sub-models can provide specific views of the EPM [93].

9.3 Introduction to Knowledge-Based Engineering

Knowledge-based engineering (KBE) is a special type of knowledge-based system
(KBS) that focuses on product development activities such as design, analysis,
process planning, and manufacturing. Stokes [89] defines KBE as ‘‘the use of
advanced software techniques to capture and re-use product and process knowl-
edge in an integrated way.’’

There are many advantages of KBE. With the product and process knowledge
stored in the system, KBE can reduce the time spent on routine work and also save
time for innovation. As the expertise is stored in the database, companies will be
less affected staff turnover. A major drawback, however, is that it takes time to
develop and update the KBE system.

KBE is currently widely used in industry. KBE systems are usually developed
by individual companies to generate product concepts using captured product and
process knowledge, and can later be used to help prepare for FEA [12, 15].

Fig. 22 Generic feature representation in a database [93]

Features and Interoperability of Computer Aided Engineering Systems 181

www.manaraa.com

A recent challenge is to integrate manufacturing-related knowledge into KBE
systems to aid in manufacturing; this often takes the form of assessment of
manufacturability and process planning [6, 85].

9.4 Foundations of KBE

Knowledge is central to KBE, and it interacts with information about how a certain
product should be developed. Considering specific knowledge-based product
engineering applications, knowledge can be managed with reference to three
categories of information: geometry, configurations, and engineering rules. The
rules are complex and powerful expressions composed with mathematical for-
mulae and conditional statements [59, 75].

Geometry. Most product-oriented KBE systems have limited capability of CAD
functions and hence are usually integrated with CAD packages. Very often, the
output of the KBE system is a CAD model.

Configuration. This refers to a functional product model that is an assembly of a
set of existing modular components. At present, vast KBE applications for con-
figuration design are used with many real cases. A typical example is Toyota’s
configuration management system [88].

Engineering rules. This refers to specific domain-related or analysis-related
knowledge that consists of well-organized logical rules and assists decision
making based on the input conditions of engineering constraints imposed in
product development processes. Figure 24 shows the framework of the KBE
system.

Unified Feature
Interface

Generic Feature Model

Entire Product Model

Database

Customer View Manufacturing
View

Process Planning
View

Costing View

Concept
Design View

Detail Design
View

Other Applica-
tion View

Fig. 23 Functional information views

182 Y. Xie et al.

www.manaraa.com

9.5 Methodology to Develop KBE Systems

The existing KBE methodologies mostly focus on systems (KBSs). For example,
CommonKADS, a widely known methodology for knowledge engineering and
knowledge management, is powerful but also difficult to learn and complex to use
[20]. However, it was not appropriately developed for KBE applications [59].
Methodology- and tools-oriented knowledge-based engineering applications
(MOKA) is another project aimed at developing a methodology to form the basis
of the international standard for KBE. MOKA is based on eight KBE lifecycle
steps: identify, justify, capture, formalize, package, distribute, introduce, and use;
however, it mainly focused on the capture and formalize steps [59, 89].

Knowledge capture is the first KBE process, intended to elicit knowledge from
experts or extract it from other sources (such as documentation). This collected
knowledge can be structured in an informal model. Correctness and completeness
are checked, and the ambiguity of language expression is eliminated. Only after
such post processing will the collected knowledge become understandable and
usable. There are several ways to elicit knowledge, depending on the knowledge
source. The most widely used method of extracting knowledge from experts is to
interview them. Another common method is to use data mining technology, which
originates from the artificial intelligence domain, to extract knowledge from
documents. For example, MOKA elicits knowledge from both experts and docu-
ments with its engineering domain ontology, which enables the identification of a
large number of knowledge objects [89].

Knowledge formalize is the process of transforming knowledge into a neutral
and formal model that can be embedded in any KBE applications. This is a process
to convert knowledge into a computer-interpretable representation that facilitates
encoding into a computer program. In MOKA, knowledge is represented with the
MOKA modeling language (MML), which is adapted from the UML.

Fig. 24 The KBE system [75]

Features and Interoperability of Computer Aided Engineering Systems 183

www.manaraa.com

9.6 Implementation of KBE in Industrial Practices

Product configuration management (PCM) in product development is a good
example of KBE application areas [88]. PCM provides the tools to translate the
engineering specifications and validation logic for option-oriented, customer-
specified product lines into a centralized PCM knowledge base. The PCM
knowledge base is made up of multiple rule types, data tables, and algorithms that
are maintained independently and associated with a product line, allowing PCM
logic to be shared across multiple product lines as required.

Take the example of Toyota. It launched the brand Scion with two models, XA
and XB, and more than 40 types of accessories for customization. Customers can
refer to detailed information offered online or from dealers to customize the con-
figuration (color, transmission, exterior, interior, wheels, and sound). Once the order
is finished, the customized car will be ready for pickup. The same KBE technique
has been applied to other Toyota products, such as Camry and Corolla [88].

As to commercially available implementation platforms, Siemens NX knowl-
edge fusion [65] is a typical and fully integrated knowledge-based engineering tool
that permits knowledge-based extension of NX by the end user. Compared to
traditional KBE technologies, the tight integration of Knowledge Fusion into the
NX digital product development system provides a significant industrial advan-
tage. Knowledge fusion permits the creation of powerful applications that take
advantage of engineering knowledge. It supports the capture and reuse of design
intent and user intelligence to increase design speed and productivity, while
intelligently controlling change propagation [84].

As illustrated in Fig. 25, companies can customize NX to include a set of
features common to their particular design practices with user-defined features.
They can be used to streamline the design process, promote reuse, and ensure that
product designs follow common methods and utilize standard design components.
User-defined features can take advantage of a robust set of additional knowledge
fusion capabilities, which is a built-in easy-to-use design scheme that allows the
designer to create rules to capture the design intent and the rationale behind design
decisions. This capability is made possible by allowing rules to be attached to the
user-defined feature. These rules can be used to alter the geometry, location, and
even the selection of the appropriate user-defined features based on model
conditions.

9.7 Future Research Issues

Knowledge technology and Artificial intelligence have a long history of develop-
ment, but KBE applications specific to product engineering are still new and have yet
to mature. For example, KBE systems are only used by big companies like Boeing
and Toyota; tools for building KBE applications such as the methodology for

184 Y. Xie et al.

www.manaraa.com

knowledge-based engineering applications (MOKA) [89] are similarly geared
toward big companies. Little research effort has been spent on building KBE systems
for small and medium-sized enterprises [59].

Transparency of reasoning procedure in KBE applications is also in need of
improvement. At present, most KBE applications operate in a black box: nobody
knows what the justifications are for deriving the results. If the built-in reasoning
logics are faulty, the results will be very misleading. A more user-friendly, flex-
ible, and adaptable knowledge base is needed.

10 Summary

Given the growing industrial demand for engineering information integration,
there should be a systematic and scalable approach to developing a uniform
implementation platform for informatics solutions that can deal with real world
diversity and complexity. This chapter presented a set of challenges that require a
new paradigm to address them. Among the many challenges, in-house knowledge
representation and implementation, associative information-sharing and manage-
ment, and cross-domain data and semantics integration (such as CAD and CAE
integration) by consistent referencing and constraint management all offer new
grounds for research and development.

Fig. 25 User-defined features supported by knowledge fusion [84]

Features and Interoperability of Computer Aided Engineering Systems 185

www.manaraa.com

This chapter tried to address these challenges by investigating their complex
requirements and exploring some initial conceptual solutions. It seems that, the-
oretically, extended feature technology offers the requisite flexibility in associating
entities from different domains with different levels of granularity. One of the
application industries is oil and gas, where chemical process engineering is the
leading field. A special section was dedicated to discussing informatics solutions
in this field. Every chemical process engineering project is a complicated task,
requiring the collaboration of engineers from different domains, such as chemical
process engineering and mechanical engineering. Due to the complexity and close
associations among the activities involved in the chemical process engineering
project, interoperability is a major issue. A NDF (such as STEP) and traditional
feature technology can only deal with structural heterogeneity.

To enhance interoperability, especially on the semantic level, an innovated
integration framework was proposed based on semantic modeling and feature
technology, and was designed to support semantics, patterns, association, and
change propagation in the chemical process engineering project. This unified
semantic integration framework is an open architecture and is designed to integrate a
number of software tools with a common system infrastructure of consistent
information referencing and updating mechanisms via a cluster of features. In that
section, those associations between semantic features were illustrated by an example
of equipment design, which provided a generic semantic representation of the
associations across multiple design stages in the chemical process project lifecycle.

Compared to conventional design, ideally the lifecycle of the design phase can
be shortened and design consistency can be more easily maintained with a sig-
nificant decrease in modeling effort. In the future, constraint management and the
consistency mechanism need to be enhanced, and knowledge extraction and
management need further research effort.

References

1. Babic BR, Nesic N, Miljkovic Z (2008) A review of automated feature recognition with
rule-based pattern recognition. Comput in Ind 59:321–337

2. Babic BR, Nesic N, Miljkovic Z (2011) Automatic feature recognition using artificial neural
networks to integrate design and manufacturing: review of automatic feature recognition
system. Artif Intell for Eng Des, Anal Manuf 25:289–304

3. Bayer B, Marquardt W (2003) A comparison of data models in chemical engineering.
Concurrent Eng 12:129–138

4. Bayer B, Marquardt W (2004) Towards integrated information models for data and
documents. Comput Chem Eng 28:1249–1266

5. Belaziz M, Bouras A, Brun JM (2000) Morphological analysis for product design. Comput
Aided Des 32:377–388

6. Bernard A, Deglin A (2000) Knowledge-based environment for the generation of rapid
product development processes. J Manuf Sci Prod 3:167–174

186 Y. Xie et al.

www.manaraa.com

7. Bianconi F, Conti P, Diangelo L (2006) Interoperability among CAD/CAM/CAE systems: a
review of current research. In: Proceedings of the conference on geometric modeling and
imaging: new trends, Washington, D.C

8. Bidarra R, Bronsvoort WF (2000) Semantic feature modeling. Comput Aided Des
32:201–225

9. Bidarra R, Berg E, Bronsvoort WF (2001) Collaborative modelling with features. In:
Proceedings of ASME design engineering technical conference, Pittsburgh

10. Bronsvoort WF, Jansen FW (1993) Feature modeling and conversion: key concepts to
concurrent engineering. Comput Ind 21:61–86

11. Bronsvoort WF, Noort A (2004) Multiple-view feature modeling for integral product
development. Comput Aided Des 36:929–946

12. Bylund N (2012) Modes, methods and tools for car body development. Licentiate thesis,
Lulea University of Technology

13. CATIA (2012) http://www.3ds.com/products/catia/. Accessed 19 Aug 2012
14. CATIA/CAA (2012) http://www.3ds.com/plm-glossary/caa-v5/. Accessed 19 Aug 2012
15. Chapman CB, Pinfold M (2001) The application of a knowledge based engineering

approach to the rapid design and analysis of an automotive structure. Adv Eng Softw
32:903–912

16. Chen G, Ma YS, Thimm G, Tang SH (2004a) Unified feature based integration of design
and process planning. In: Hinduja S (ed) Proceedings of the international MATADOR
conference. Springer, London

17. Chen G, Ma YS, Thimm G, Tang SH (2004) Unified feature modeling scheme for the
integration of CAD and Cax. Comput Aided Des Appl 1:595–601

18. Chen G, Ma YS, Thimm G, Tang SH (2005) Knowledge-based reasoning in a unified
feature modeling scheme. Comput Aided Des Appl 2:173–182

19. Chen G, Ma YS, Thimm G, Tang SH (2006) Associations in a unified feature modeling
scheme. ASME Trans J Comput Inf Sci Eng 6:114–126

20. CommonKADS (2012) http://www.commonkads.uva.nl/. Accessed 1 Oct 2012
21. Couper JR, Penney WR, Fair JR et al (2004) Chemical process equipment: selection and

design, 2nd edn. Elsevier, Burlington
22. Cutkosky MR et al (2006) PACT: an experiment in integrating concurrent engineering

systems. IEEE Comput 26:28–37
23. Deng YM, Britton GA, Lam YC, Tor SB, Ma YS (2002) Feature-based CAD-CAE

integration model for injection-moulded product design. Int J Prod Res 40:3737–3750
24. Fischer A, Wang KK (1997) A method for extracting and thickening a mid-surface of a 3D

thin object represented in NURBS. J Manuf Sci Eng Trans ASME 119:706–712
25. Fonseca F, Egenhofer M, Davis C, Câmara G (2002) Semantic granularity in ontology-

driven geographic information systems. AMAI Annals Math Artif Intell 36:121–151
26. Foucault G, Cuilliere JC, Francois C, Leon JC, Maranzana R (2008) Adaptation of CAD

model topology for finite element analysis. Comput Aided Des 40:176–196
27. Francois V, Cuilliere JC, Gueury M (1999) Automatic meshing and remeshing in the

simultaneous engineering context. Res Eng Des 11:55–66
28. Gabbert U, Wehner P (1993) Steps towards CAD–FEA integration. Eng Comput 9:17–26
29. Gao J, Zheng DT, Gindy N (2004) Extraction of machining features for CAD/CAM

integration. Int J Adv Manuf Technol 24:573–581
30. Gao J, Zheng DT, Gindy N (2004) Mathematical representation of feature conversion for

CAD/CAM system integration. Robot Comput Integr Manuf 20:457–467
31. Gordon S (2001) An analyst’s view: STEP-enabled CAD-CAE integration. In: Proceedings

of presentation materials of NASA’s STEP for aerospace workshop, jet propulsion
laboratory, Pasadena

32. Gujarathi GP, Ma YS (2010) Generative CAD and CAE integration using common data
model. In: Proceedings of the 6th annual IEEE conference on automation science and
engineering, Toronto

Features and Interoperability of Computer Aided Engineering Systems 187

http://www.3ds.com/products/catia/
http://www.3ds.com/plm-glossary/caa-v5/
http://www.commonkads.uva.nl/

www.manaraa.com

33. Gujarathi GP, Ma YS (2011) Parametric CAD/CAE integration using a common data
model. J Manuf Syst 30:118–132

34. Han JH, Pratt M, Regli WC (2000) Manufacturing feature recognition from solid modes: a
status report. IEEE Trans Robot Autom 16:782–796

35. Han S, Lee T (1999) Information sharing between process and engineering design activity in
CAD environment. Comput Chem Eng Suppl:S573–S576

36. Hao Q, Shen WM et al (2006) Agent-based collaborative product design engineering: an
industrial case study. Comput Ind 57:26–38

37. Hu KM, Wang B, Liu Y, Huang J, Yong JH (2012) An extended schema and its production
rule-based algorithms for assembly data exchange using IGES. Int J Adv Manuf Technol
58:1155–1170

38. ISO 6983-1 (1982) Numerical control of machines-program format and definition of address
words—part 1: data format for positioning, line motion and contouring control systems.
International Organization for Standardization, Geneva

39. ISO 10303-42 (1994) Industrial automation systems and integration: product data
representation and exchange—part 42: integrated generic resources: geometric and
topological representation. International Organization for Standardization, Geneva

40. ISO 10303-1 (1995) Industrial automation systems and integration: product data
representation and exchange—part 1: overview and fundamental principles. International
Organization for Standardization, Geneva

41. ISO 10303-212 (2001) Industrial automation systems and integration: product data
representation and exchange—part 212: application protocol: electrotechnical design and
installation. International Organization for Standardization, Geneva

42. ISO 10303-232 (2002) Industrial automation systems and integration: product data
representation and exchange—part 232: application protocol: technical data packaging
core information and exchange. International Organization for Standardization, Geneva

43. ISO 14649-1 (2003) Industrial automation systems and integration: physical device
control—data model for computerized numerical controllers—Part 1: overview and
fundamental principles. International Organization for Standardization, Geneva

44. ISO 10303-227 (2005) Industrial automation systems and integration: product data
representation and exchange—Part 227: application protocol: plant spatial configuration,
2nd edn. International Organization for Standardization, Geneva

45. ISO 10303-239 (2005) Application protocol for product life cycle support: HTML
document and electronic inserts (includes access to additional content). International
Organization for Standardization, Geneva

46. ISO 10303-221 (2007) Industrial automation systems and integration: product data
representation and exchange—Part 221: application protocol: functional data and their
schematic representation for process plants. International Organization for Standardization,
Geneva

47. ISO 10303-238 (2007) Industrial automation systems and integration: product data
representation and exchange—Part 238: application protocol: application interpreted
model for computerized numerical controllers. International Organization for
Standardization, Geneva

48. ISO 10303-210 (2011) Industrial automation systems and integration: product data
representation and exchange—Part 210: application protocol: electronic assembly,
interconnect, and packaging design (2nd edn). International Organization for
Standardization, Geneva

49. Ji AM, Zhu K, Huang JC, Dong YP (2011) CAD/CAE integration system of mechanical
parts. Adv Mater Res 338:272–276

50. Kao YC, Cheng HY, She CH (2006) Development of an integrate CAD/CAE/CAM system
on taper-tipped thread-rolling die-plates. J Mater Proc Technol 177:98–103

51. Kemmerer S (1999) STEP: the grand experience. National Institute of Standards and
Technology Special Publication, USA

188 Y. Xie et al.

www.manaraa.com

52. Kim J, Pratt M, Iyer RG, Sriram RD (2008) Standardized data exchange of CAD models
with design intent. Comput Aided Des 40:760–777

53. Lam SM, Wong TN (2000) Recognition of machining features: a hybrid approach. Int J
Prod Res 38:4301–4316

54. Lander SE (1998) Issues in multi-agent design systems. IEEE Expert Intell Syst Appl
12:18–26

55. Lee HC, Jhee WC, Park HS (2007) Generative CAPP through projective feature
recognition. Comput Ind Eng 53:241–246

56. Lee SH (2005) A CAD-CAE integration approach using feature-based multi-resolution and
multi-abstraction modeling techniques. Comput Aided Des 37:941–955

57. Li SH, Shao XD, Ge XB (2010) A kind of CAD/CAE integrated modeling technology based
on feature. Adv Mater Res 97–101:3436–3442

58. Liang J, Shah JJ, D’Souza R et al (1999) Synthesis of consolidated data schema for
engineering analysis from multiple STEP application protocols. Comput Aided Des
31:429–447

59. Lovett PJ, Ingram A, Bancroft CN (2000) Knowledge-based engineering for SMEs: a
methodology. J Mater Process Technol 107:384–389

60. Ma YS (2009) Towards semantic interoperability of collaborative engineering in oil
production industry. Concurrent Eng 17:111–119

61. Ma YS, Tong T (2003) Associative feature modeling for concurrent engineering integration.
Comput Ind 51:51–71

62. Marquardt W, Nagl M (2004) Workflow and information centered support of design
processes: the IMPROVE perspective. Comput Chem Eng 29:65–82

63. Monedero J (2000) Parametric design: a review and some experiences. Autom Constr
9:369–377

64. NX (2012) http://www.plm.automation.siemens.com/en_us/products/nx/. Accessed 19 Aug
2012

65. NX knowledge fusion (2010) http://www.plm.automation.siemens.com/en_us/products/nx/.
Accessed 19 Aug 2012

66. NX programming and customization (2010) http://www.plm.automation.siemens.com/
zh_cn/Images/4988_tcm78-4564.pdf. Accessed 19 Aug 2012

67. Owen J, Bloor MS (1987) Neutral formats for product data exchange: the current situation.
Comput Aided Des 19:436–442

68. Pahng GDF, Bae S, Wallace D (1998) Web-based collaborative design modeling and
decision support. In: Proceedings of the ASME design engineering technical conferences,
Atlanta

69. Perng DB, Cheng CF (1997) Resolving feature interactions in 3D part editing. Comput
Aided Des 29:687–700

70. Pratt MJ, Anderson BD, Ranger T (2005) Towards the standardized exchange of
parameterized feature-based CA models. Comput Aided Des 37:1251–1265

71. Pro/TOOLKIT (2012) http://www.ptc.com/product/creo/toolkit. Accessed 19 Aug 2012
72. Razayat M (1996) Midsurface abstraction from 3D solid models: general theory and

applications. Comput Aided Des 28:905–915
73. Remondini L, Leon JC, Trompette P (1996) Generic data structures dedicated to integrated

structural design. Finite Elem Anal Des 22:281–303
74. Salomons OW, van Houten FJAM, Kais HJJ (1993) Review of research in feature-based

design. J Manuf Syst 12:113–132
75. Sandberg M (2003) Knowledge based engineering in product development. Technical

report, Lulea University of Technology
76. Sequin CH (2005) CAD tools for aesthetic engineering. Comput Aided Des 37:737–750
77. Shah JJ (1991) Assessment of feature technology. Comput Aided Des 23:331–343
78. Shah JJ, Mantyla M (1995) Parametric and feature based CAD/CAM: concepts, techniques

and applications. Wiley, New York

Features and Interoperability of Computer Aided Engineering Systems 189

http://www.plm.automation.siemens.com/en_us/products/nx/
http://www.plm.automation.siemens.com/en_us/products/nx/
http://www.plm.automation.siemens.com/zh_cn/Images/4988_tcm78-4564.pdf
http://www.plm.automation.siemens.com/zh_cn/Images/4988_tcm78-4564.pdf
http://www.ptc.com/product/creo/toolkit

www.manaraa.com

79. Shahin TMM (2008) Feature-based design: an overview. Comput Aided Des Appl
5:639–653

80. Shen WM, Barthes JP (1997) An experimental environment for exchanging engineering
design knowledge by cognitive agents. In: Mantyla M, Finger S, Tomiyama T (eds)
Knowledge intensive CAD-2. Chapman & Hall, London

81. Shen WM, Hao Q et al (2010) System integration and collaboration in architecture,
engineering, construction, and facilities management: a review. Adv Eng Inform
24:196–207

82. ShuMing Gao (1998) A survey of automatic feature recognition, Chin J Comput
21:281–288. In Chinese

83. Siegel J (1996) CORBA: fundamentals and programming. Wiley, New York
84. Siemens PLM Software (2012) http://www.plm.automation.siemens.com/en_us/. Accessed

1 Oct 2012
85. Singh N et al (1997) A knowledge engineering framework for rapid design. Comput Ind Eng

33:345–348
86. Spatial (2012) http://www.spatial.com/products/3d-acis-modeling. Accessed 12 Sep 2012
87. Srinivasan V (2008) Standardizing the specification, verification, and exchange of product

geometry: research, status and tends. Comput Aided Des 40:738–749
88. Stanford Graduate School of Business (2005) Toyota: demand chain management, global

supply chain management forum. Case: GS-42
89. Stokes M (ed) (2001) Managing engineering knowledge: MOKA—methodology for

knowledge based engineering applications. Wiley, New York
90. Sudarsan R, Fenves SJ, Sriram RD, Wang F (2005) A product information modeling

framework for product lifecycle management. Comput Aided Des 37:1399–1411
91. Suh SH, Cho JH, Hong HD (2002) On the architecture of intelligent STEP-compliant CNC.

Int J Comput Integr Manuf 15:168–177
92. Suh SH, Lee BE, Chung DH, Cheon SU (2003) Architecture and implementation of a shop-

floor programming system for STEP-compliant CNC. Comput Aided Des 35:1069–1083
93. Tang SH, Ma YS, Chen G (2004) A feature-oriented framework for web-based CAx

applications. Comput Aided Des Appl 1:117–126
94. Tseng YJ, Joshi SB (1994) Recognizing multiple interpretations of interacting machining

features. Comput Aided Des 26:667–688
95. Ulieru M, Norrie D, Kremer R, Shen WM (2000) A multi-resolution collaborative

architecture for web-centric global manufacturing. Inf Sci 127:3–21
96. UnifiedCAD (2012) http://www.unifiedcad.com/. Accessed 19 Aug 2012
97. van Dijk CGC (1995) New insights in computer-aided conceptual design. Des Stud

16:62–80
98. Wang H (1995) An approach to computer-aided styling. Des Stud 16:50–61
99. Wang XV, Xu XW (2012) DIMP: an interoperable solution for software integration and

product data exchange. Enterp Inf Syst 6:291–314
100. Wang YD, Shen WM, Ghenniwa H (2003) Webblow: a web/agent-based multidisciplinary

design optimization environment. Comput Ind 52:17–28
101. Wiesner A, Morbach J, Marquardt W (2011) Information integration in chemical process

engineering based on semantic technologies. Comput Chem Eng 35:692–708
102. Wittenborn D (2004) CAD interoperability. http://www2.tech.purdue.edu/cimt/courses/

cimt311/cad_interop.pdf. Accessed 13 Aug 2012
103. Xie Y, Wei J, Ma YS (2012) Multi-view feature model representation to support integration

of chemical process and mechanical design. Comput Aided Des Appl: accepted
104. Xu XW, Wang J (2004) Development of a G-code free, STEP-compliant CNC lathe. In:

Proceedings of 2004 ASME international mechanical engineering congress and exposition,
Anaheim

105. Xu XW, Newman ST (2006) Making CNC machine tools more open, interoperable and
intelligent: a review of the technologies. Comput Ind 57:141–152

190 Y. Xie et al.

http://www.plm.automation.siemens.com/en_us/
http://www.spatial.com/products/3d-acis-modeling
http://www.unifiedcad.com/
http://www2.tech.purdue.edu/cimt/courses/cimt311/cad_interop.pdf
http://www2.tech.purdue.edu/cimt/courses/cimt311/cad_interop.pdf

www.manaraa.com

106. Xu XW et al (2005) STEP-compliant NC research: the search for intelligent CAD/CAPP/
CAM/CNC integration. Int J Prod Res 43:3703–3743

107. Xu XY, Wang YY (2002) Multi-model technology and its application in the integration of
CAD/CAM/CAE. J Mater Proc Technol 129:563–567

108. Yin CG, Ma YS (2012) Parametric feature constraint modeling and mapping in product
development. Adv Eng. doi:10.1016/j.aei.2012.02.010

109. Zhou X, Qiu Y, Hua G, Wang H, Ruan X (2007) A feasible approach to the integration of
CAD and CAPP. Comput Aided Des 39:324–338

110. Zhu GuoWang (1994) An overview of feature technology on CAD/CAM, Chin J Comput
Appl 8–12. In Chinese

Features and Interoperability of Computer Aided Engineering Systems 191

http://dx.doi.org/10.1016/j.aei.2012.02.010

www.manaraa.com

Data Representation and Modeling
for Process Planning

Chulho Chung and Qingjin Peng

Notations

AOR Annual operational requirement (h)
c Annual preventive maintenance cost including servicing, inspection,

calibration
Co Machine capital cost
Cm Normalized machine cost based on machine capital cost and mainte-

nance cost
dij Dimensional tolerance between manufacturing faces fi and fj
EIDL End item design life
ETj Elapsed time of the jth preventive maintenance task for the ith failure

mode
Fi, Fj ith and jth manufacturing features
fi, fj ith and jth manufacturing faces
m Number of relative tolerances
MTBF Mean time between failures
MTTR Mean time to repair for corrective maintenance
n Number of manufacturing faces in a part to be machined
Pcm Corrective maintenance cost rate per hour, including payment and spare

parts
Ppm Preventive maintenance cost rate per hour, including payment and supplies
q Number of failure modes in a machine
Ra Roughness average
r Number of preventive maintenance tasks in a failure mode
si Surface roughness given to a manufacturing face fi
TFj Task frequency of the jth preventive maintenance task for the ith failure

mode

C. Chung � Q. Peng (&)
Department of Mechanical and Manufacturing Engineering,
University of Manitoba, Manitoba, Canada
e-mail: pengq@cc.umanitoba.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_7, � Springer-Verlag London 2013

193

www.manaraa.com

1 Introduction

Process planning designs the details required for the manufacture of a product
according to its design specifications and available manufacturing resources. It
includes a variety of activities such as interpretation of product design, selecting,
and sequencing of machining processes, selection of machine tools and cutting
tools, determination of cutting parameters, choice of jigs and fixtures, and cal-
culation of production time and cost. Process planning is recognized as a bridge
between design and manufacturing. Computer-aided process planning (CAPP)
plays an important role in an integrated CAD/CAM system [11].

CAPP systems can not only generate consistent and reasonable process plans,
but also provide a user interface with CAD systems in a computer-integrated
manufacturing (CIM) environment. Investigation shows that an efficient CAPP
system can result in a total reduction of production costs by up to 30 %, and the
length of a manufacturing cycle can also be reduced by up to 50 % [1].

As a feasible process plan has to include resources available in a specific
industry where a product is produced, process planning can be a very complex
process. The selection of machine tools, cutters, process parameters, and material
removal processes is based on a variety of factors. Process planning relies on a
good understanding of manufacturing environments. Data representation and
process modeling are important parts of a feasible plan, as CAPP systems depend
greatly on available data, data presentation, and communication between planners
and computer systems.

A great deal of research has been done in the area of CAPP, in large part
devoted to addressing the needs of dynamic processes, integration of design and
manufacturing, and data collection and management in process planning. Artifi-
cially intelligent (AI) technologies have been employed in CAPP systems for the
recognition and representation of part features, for machining operation and tool
selection, and in operation sequence planning [2, 7–10, 15, 16].

There are two major traditional approaches to CAPP systems: variant and
generative methods [14]. The variant CAPP system uses an information retrieval
procedure based on group technology (GT). All the parts involved in this system
are grouped into component families according to their similarity in design and
manufacture. This method is useful for relatively well-established companies, as
they are likely to have stable products. In contrast, the generative CAPP system
uses manufacturing knowledge to generate process plans. This has been advan-
tageous for new product development, but it relies on the development of AI
technologies. Most CAPP systems have various functions to aid process planning
activities, including selection of machining processes, sequencing of machining
operations, choice of machine tools and cutting tools, decision of machining
parameters, and estimation of time and cost. A conventional CAPP procedure is
shown in Fig. 1. This process is followed a ‘‘serial’’ approach from the input of
part information to the output of the process plan.

194 C. Chung and Q. Peng

www.manaraa.com

This chapter introduces process planning for methods in manufacturing feature
recognition, set-up planning and sequencing, machining process determination,
and the selection of tools and machines in a dynamic manufacturing environment.
Database (DB) search algorithms and knowledge are introduced to efficiently
determine tool and machine alternatives. Rotational parts are used as examples of
process planning in the discussion.

2 Data Structure and Database for Process Planning

Figure 1 shows entities and data relationships in process planning. Each entity
represents data from manufacturing environments associated with others in the
environments. For instance, product data are based on a hierarchical structure,
such as the bill of materials (BOM), which may be associated with a set of part
data. A part consists of a number of manufacturing features that may require
different machining processes. A manufacturing feature can be divided into a set of
manufacturing faces based on tolerance assignment. A suitable process with
available tools and machines can be decided based on the tolerance information
and a chosen material type for a manufacturing feature. Therefore, data interaction
is critical to efficiently support process planning for a manufacturing part.

The data can be defined and managed in a database management system with
machine DB, tool DB, and material DB. A DB is defined with tables and rela-
tionships such as one-to-one, one-to-many, many-to-many, one-to-one recursive,
and one-to-many recursive relationships [17]. For instance, 36 tables with several
types of relationships (Appendix 1) are used to define the tool and machine DBs in

Part

Process plan Product

Material

Manufacturing
face

Machining
process

Tolerance

Machine Tool

Manufacturing
feature

Fig. 1 Data and relationships in process planning

Data Representation and Modeling for Process Planning 195

www.manaraa.com

the system introduced in this chapter. In particular, the tool DB is modeled via ISO
standards. This DB is generic, so that it can be commonly used in a variety of
industries. Figure 2 shows an example of the ISO code designation of external
insert holders.

As shown in Fig. 2, an external insert holder is represented by ten pre-desig-
nated codes, and the description of each code is described in detail. Figure 3 shows
an example of data modeling for the external insert holders shown in Fig. 2.
A table is defined via the data definition language (DDL) syntax of SQL, which is
presented in Fig. 3. Based on this syntax, a table named tblExternalInsertHolder is
defined, consisting of appropriate fields and data types. Every piece of external
insert holder data, including the unit price and number of quantities on the shop
floor, are stored in this table as well.

As shown in Fig. 3, the tblExternalInsertHolder table is modeled using one-to-
many relationships with tables for ten pre-designated codes. This structure is
advantageous for maintaining data integrity and efficiently managing data: each
table stores its own information, and this information is neither kept in other tables
nor managed by them. Instead, relationships based on primary and foreign keys
efficiently make connections among the tables. Moreover, primary and foreign key
interactions enable a reduction in searching time to find or form specified infor-
mation, allowing an index-based searching scheme.

3 Manufacturing Features and Recognition

Manufacturing features are defined here as elements that can be formed in a single
manufacturing process. The feature parameters consist of design geometric data,
surface roughness, dimensional and geometric tolerances, and methods to form the
manufacturing feature. A feature is not directly available from a product design,
such as a CAD file. Therefore, feature recognition is required to convert the design
information into manufacturing features used to generate the process plan.

Several data exchange standards have been established to mediate between
heterogeneous CAD systems. Among these standard data exchange formats, the
mostly widely used are data exchange file (DXF), initial graphics exchange
specification (IGES), and the standard for the exchange of product data (STEP).
Owing to simplicity of format and ease of access, the DXF format has been
selected as the data input of the CAPP system for manufacturing feature recog-
nition in the discussion that follows here. This selection is also based on the wide
use of AutoCAD systems in industries where a DXF-formatted part drawing is
usually given to a planner for process planning. A feature-management module is
developed here for this purpose, which supports the feature-based modeling of a
part for process planning. A part design is represented by geometric entities such
as lines, curves, and surfaces. From a DXF data file, the feature recognition starts
with obtaining geometric entities used to form manufacturing features. Figure 4
shows the brief steps involved in converting the DXF representations into the

196 C. Chung and Q. Peng

www.manaraa.com

geometric entities defined in this method. The detailed flowchart of these steps is
illustrated in Appendix 2.

As can be seen in Fig. 4, a line entity is converted from the DXF representa-
tions such as AcDbLine or AcDbPolyline, and stored in a defined entity format
(Line_type, Point1, Point2). Line_type defines either a straight line or a tangential
line. In particular, if a line entity from a DXF includes the number 42, it will need

Fig. 2 Designation-external insert holders [12, 13]

Data Representation and Modeling for Process Planning 197

www.manaraa.com

Fig. 3 An example of data modeling and table definition for the external insert holders shown in
Fig. 2

Fig. 4 Steps of converting geometric entities from DXF representations

198 C. Chung and Q. Peng

www.manaraa.com

a circular interpolation in the following line, because the DXF format does not
provide information for the circle between two lines. The circular entity interpo-
lated here is also stored in a defined circular entity format (Circular_direction,
Centre_point, Start_angle, End_angle, Radius). In the above entity format, Cir-
cular_direction is defined as one of the two directions: counter-clockwise (CCW)
and clockwise (CW). Figure 5 and Eqs. (1), (2), and (3) are used to interpolate a
circle between two lines from a DXF.

Determination of the center point xc and yc is

xc ¼
b2 � b1

a1 � a2

� �
; yc ¼ a1xc þ b1 ð1Þ

where, a1 ¼ � x01�x00
y01�y00

� �
; b1 ¼ y01 � a1x01 and a2 ¼ � x001�x000

y001�y000

� �
; b2 ¼ y000 � a2x000

Determination of the radius r:

r ¼
ffi
xc � x01
� �2þ yc � y01

� �2
q

ð2Þ

Determination of two angles /1 and /2:

/1 ¼ tan�1 yc � y01
xc � x01

� �
� 180

p

				

				 and /2 ¼ tan�1 yc � y000
xc � x000

� �
� 180

p

				

				 ð3Þ

Once geometric entities are obtained and stored, the next procedure converts
these entities into manufacturing features. This process uses decision-making
diagrams to determine the type of feature. There are three types of decision-
making diagrams (Appendix 3) developed in this research, one of them is illus-
trated in Fig. 6.

In Fig. 6, if the second layer entity is the same line entity as the first, it should
be an L_Void or E_Thread feature depending on the type of the next layer entity.
In this case, the type of the next layer entity (i.e., the third layer entity) is examined
to determine the filling type of the feature for the second layer entity. Based on
these rules, a feature can be formed from obtained geometric entities. In particular,
an object-oriented manufacturing feature (OOMF) scheme based on object-ori-
ented programming (OOP) is introduced here to efficiently store and manipulate
the defined feature. Figure 7 shows a hierarchical class diagram of the OOMFs

l ′
l ′′

()00 , yx ′′

()11 , yx ′′ ()00 , yx ′′′′

()11 , yx ′′′′()CC yx ,

r

1
φ 2

φ

Fig. 5 Circle interpolation
between two arbitrary lines

Data Representation and Modeling for Process Planning 199

www.manaraa.com

representing a groove, a tap, an internal and an external cylinder, and a thread,
which are inherited from a super class called the ManufFeature class.

The ManufFeature Java class is described in Appendix 4. This class is inter-
faced with the FeatureManagement class, which imports the DXF of a part, and
converts the obtained geometric entities to OOMFs via methods presented earlier
in this section. As shown in Appendix 4 in particular, a defined feature has the
information about its manufacturing faces used for tolerancing, or setup planning
and sequencing. The manufacturing faces here are simply calculated from defined
features. For instance, each feature initially generates four manufacturing faces:
right, left, upper, and lower faces. Then, the related manufacturing faces in
adjacent features are merged or redefined via simple rules. These rules are for-
mulated by using the normal vectors (±X, ±Y) of adjacent manufacturing faces,
which are examined by such properties as prevFeatureID and ingredientList.

4 Part Setup Planning and Process Sequencing

Setup planning and sequencing define a set of part faces that can be manufactured
at one setup of a machine tool. The features defined in Fig. 7 can be divided into a
set of manufacturing faces to define dimensional and geometric tolerances. These
tolerances are categorized into local tolerances (e.g., tolerance of a diameter of a
hole) and relative tolerances (e.g., a geometric tolerance such as concentricity, or a
tolerance of a dimension between two faces). Depending on the number of faces
used to define a tolerance, the notion of this categorization is applied for calcu-
lating tolerance factors proposed by Huang [5].

Fig. 6 A decision-making diagram for feature definition based on obtained geometric entities

200 C. Chung and Q. Peng

www.manaraa.com

Using this method, the setup planning and sequencing algorithm via the tol-
erance factors is adopted to minimize the number of setup sequences. This algo-
rithm was suggested by Huang [5] and Huang and Zhang [6]. A tolerance defined
in single or multiple manufacturing faces can be converted into a tolerance factor
when dividing the tolerance value by the representative length. This is relative
tolerance information, representing which manufacturing face combination has a
tighter tolerance relationship in a part to be manufactured. Several examples of
calculating tolerance factors are included in Appendix 5.

The setup planning and sequencing algorithm is summarized in Appendix 6.
This algorithm begins by grouping manufacturing faces with tight tolerance
relationships, which should be machined at the same setup based on tool approach
directions. The selection of setup data is then executed to facilitate tolerance
control, namely, manufacturing faces that have tight tolerance relationships to be
mutually clamped and referenced. These setup data consist of a datum plane and a
clamping position in a lathe machine. Subsequently, the machining procedure that
determines a setup sequence is checked with the available setup data (they are the
base faces for setting up machining processes) and those faces to be machined with
tight tolerance relationships.

The machining process of a manufacturing face is determined by two factors:
the surface roughness obtained from machining processes [3] and the ISO

Fig. 7 Hierarchical class diagram of the OOMFs

Data Representation and Modeling for Process Planning 201

www.manaraa.com

tolerance number (IT-number or ISO tolerance grade) assigned for different
machining processes [18]. The former is applied when surface roughness is given
to a manufacturing face while the latter is applied for a manufacturing face with a
dimensional and geometric tolerance. Moreover, the most precise factor will be
chosen if two or more tolerances given to a manufacturing face lead to different
machining processes. Figure 8 shows a decision-making diagram to determine a
machining process when surface roughness is given to a manufacturing face. In
Fig. 8, a turning process based on the given surface roughness is chosen among the
machining processes such as roughing, semi-roughing, finishing, fine turning, and
external and internal threading. Grinding and honing are not included. Note that
each referenced roughness value (i.e., 63l in Fig. 8) refers to the roughness
average (Ra) that is defined as the average deviation from the mean surface or
arithmetical average.

For a dimensional or geometric tolerance given to a manufacturing face, it is
necessary to determine the IT-number that is based on both the basic size of the
face and its tolerance limitation. For instance, a manufacturing face shown in
Fig. 9 is assigned a dimensional tolerance of d = 0.2 mm. The basic size of this
face is D = 124.9 mm. The tolerance coefficient for this face can then be calcu-
lated as follows [18]:

tolerance coefficient ¼ d � 103

0:45D
1
3 þ 0:001D

� � ð4Þ

Using Eq. (4), the resulting coefficient &84, and it corresponds to the IT-number
10 (i.e., IT10) via the tolerance-grade conversion table (refer to Appendix 7). With
this IT-number, the semi-roughing turning process is subsequently chosen in the
machining process allocation table in Appendix 7.

Fig. 8 A decision-making diagram to determine a turning process for a given surface roughness

202 C. Chung and Q. Peng

www.manaraa.com

5 Tools and Machines Selection

Tools and machines can be selected in both static and dynamic manufacturing
environments. Manufacturing resources (including tools, machines, and personnel)
at a shop floor are always available in a static environment, which is assumed in
traditional CAPP systems. In a dynamic manufacturing environment, however, it is
essential to consider resource availability and time schedules for a feasible process
plan [4]. The following process for selecting tools and machines will enable
process planning to generate timely alternative plans for workable and economical
production.

5.1 Tools Selection

5.1.1 Tool Alternative Retrieval from Tool DB

For tools selection, it is important to initially determine all possible tools that will
be needed to machine the faces of a part. These tools are retrieved from the shop
floor’s tool DB. However, the selected tools and their combinations may create a
huge amount of choices that would appear to be required to machine the whole
part. In the method proposed here, two approaches are taken to reduce the number
of tools retrieved from the tool DB. The first is to reduce the number of trans-
actions with the DB, and the second is to reduce the amount of data to be retrieved,
which responds to user requests. An efficient DB search strategy is required in
order to satisfy these considerations.

DB search algorithms are thus developed to efficiently search the tool DB in
retrieving tool alternatives for manufacturing faces of a part. These algorithms are
based on dynamic SQL queries and searching criteria. Figure 10 shows a DB
search algorithm to retrieve the tool alternatives for external manufacturing faces
of a part. As shown in Fig. 10, this algorithm starts with forming a manufacturing
face direction (i.e., manufFaceDirection in Fig. 10) based on a set of external
manufacturing faces in a part, which are expected to process with an external

X
X

±0.1
D=124.9Fig. 9 A manufacturing face

with a dimensional tolerance
to calculate the IT-number

Data Representation and Modeling for Process Planning 203

www.manaraa.com

turning tool at one setup. A formed manufacturing face direction is a set of
direction vectors, and is represented by a set of predefined numerals. Moreover,
this set of geometry-based vectors can be easily converted into the required
directional constraints of an external turning tool to machine the set of external
manufacturing faces.

To retrieve the least number of tool alternatives from the tool DB, the manu-
facturing face direction is initially formed via all the external manufacturing faces
of a part at one setup. This manufacturing face direction is then inserted into a
dynamic SQL query with other search criteria, including required tool material
types and tool availability. The determination of the required tool material types is
based on the material type of the work-piece, hardness, and required machining
processes. The material type of the work-piece and hardness are based on the

manufFaceDirection at a set-up

Is Found Tool Type Matched

“SELECT DISTINCT * FROM tblExternalInsertHolder, ” +
“TblExtTurningTool, tblInsertForTurning WHERE ” +
“tblExternalInsertHolder.Ext_Ins_Hold_ID = ” +
“TblExtTurningTool.Ext_Ins_Hold_ID AND ” +
“tblInsertForTurning.Ins_ID = TblExtTurningTool.Ins_ID ” +
“AND Ext_Turn_Face_Direction LIKE '%” + strFaceDirection
+ “%' AND ins_grade_ID IN (” + tempMat + “) AND ” +
“Ext_Turn_Tool_Qty>0 ORDER BY ” +
“tblExternalInsertHolder.ins_hold_clamp_Type, ” +
“tblExternalInsertHolder.ins_shape_Type, ” +
“tblExternalInsertHolder.ins_hold_toolstyle_Type ”;

Set strFaceDirection= manufFaceDirection

Retrieve tools from tool DB

StrFaceDirection =
StrFaceDirection.subString (0,

StrFaceDirection.length-1)

StrFaceDirection.length >2

Set StrToolDirection= “R”

StrToolDirection != “L”

Define StrToolDirection= “L”

Ask User via GUI

Store data in to OODBs to the Client Side

Let StrFaceDirection = manufFaceDirection.subString
(StrFaceDirection.length, manufFaceDirection.length)

Let StrToolDirection= “R”

N

Y N

Y

N

StrFaceDirection != “ ”

N

Y

Next Set-up

Fig. 10 DB search algorithm to retrieve possible tool alternatives for external manufacturing
faces of a part

204 C. Chung and Q. Peng

www.manaraa.com

part’s design requirements, while machining processes are determined by given
tolerances (as discussed in the previous section). To efficiently support the
determination process of a tool material, a tool manufacturer’s handbook [12, 13]
based on ISO 513 is used to collect related knowledge. A summary of knowledge
tables is illustrated in Appendix 8.

The availability of a tool is examined by checking the remaining quantity of the
tool in the tool DB. As shown in Fig. 10, a searching criterion such as the
Ext_Turn_Tool_Qty[0 is simply inserted for this check. When a tool is reserved
for a part to be manufactured, its quantity information in the tool DB can be
reduced by one. The DML (Data manipulation language) used for defining the
dynamic SQL query shown in Fig. 10 is also used for this update process (e.g.,
UPDATE TblExtTurningTool SET Ext_Turn_Tool_Qty=Ext_Turn_Tool_Qty-1
WHERE Ext_Turn_Tool_ID=…). Moreover, this process can increase the quantity
of a tool in the tool DB when the tool returns to an available state.

The dynamically generated SQL query shown in Fig. 10 is sent to the DB, and
is used to search appropriate external tools. If there is no tool matched in terms of
the tool direction vector, the manufacturing face direction represented by numerals
is reduced by a string operation. In Fig. 10, this string operation is described by the
Java expression StrFaceDirection.subString (0, StrFaceDirection. length-1). This
reduction process is repeatedly executed until a matched tool is found. In this
method, tool direction vectors can be represented as a set of directions with which
the tool moves in a machine. They are also pre-stored in the knowledge DB with
constraints. The used tool direction vectors and constraints are based on tool
holder types and insert shapes according to ISO. Therefore, all tools designated by
the ISO standard can use this knowledge without any further modification.

Figure 11 shows a type of an internal turning tool with tool direction vectors
and constraints in the knowledge DB. As shown in Fig. 11, the tool type is SCXC,
as classified by ISO. It has the tool direction vectors of 454565 and 121818,
depending on the insert-holder direction types. Four constraints for this tool type
are also listed in Fig. 11. For instance, if a formed manufacturing face direction is
represented as 4545, it will be matched with the tool direction vectors of 454565
(i.e., 4545 � 454565). A checking process to avoid a tool collision is then exe-
cuted for the four constraints of this tool, as shown in Fig. 11, namely, the
Tool_Height (i.e., a ? 0.5b) \ Hole_Radius, h4, h6 = 40�, and l6 \ csin 40�.

This method is expected to reduce the number of transactions as well as
overwhelming numbers of possible tool alternatives retrieved from the tool DB. It
can also protect a possible tool-path from interference from adjacent features,
which may occur when a tool is recommended from only one manufacturing
feature. Subsequently, the tools recommended for machining a whole part con-
sisting of manufacturing faces are stored in an object-oriented database (OODB) ,
called TurningToolOODB. In particular, the TurningToolOODB (see Appendix 9)
stores tool information and manufacturing faces to be machined at a setup. These
tool alternatives are further used to create complete tool sets to machine a whole

Data Representation and Modeling for Process Planning 205

www.manaraa.com

part. Thus, the complete tool sets form a basis for performing the tool- and
machine-selection process by weighting the factors of production time and cost,
which will be further discussed later in this chapter.

5.1.2 Creation of Complete Tool Sets Based on Tool Alternatives

The creation of possible complete tool sets is based on all tool alternatives
retrieved for a whole part. These tool alternatives are stored in the Turning-
ToolOODB. Because a huge amount of possible tool sets can be created, an
algorithm is developed to efficiently generate complete tool sets using the Turn-
ingToolOODB. For instance, Fig. 12 shows manufacturing faces to be machined at
one setup. As shown in Fig. 12, the manufacturing faces are grouped into p-sets of
manufacturing faces. Each face set (i.e., i = 1, 2, …, p) is machined by a tool type
but it can have a number of tool alternatives of different types. In Fig. 12, the
number of tool alternatives for each face set is represented as Nt(i). The total
number of possible tool sets created is Nt 1ð Þ � Nt 2ð Þ � � � � � Nt pð Þ:

Algorithm 1 is used to create possible complete tool sets that are based on the
retrieved tool alternatives for manufacturing faces in one setup. In Algorithm 1,
the TurningToolOODB is an array of the TurningToolOODB classes to store tools,
and possible tool sets (i.e., toolset array) store indexes of the TurningToolOODB
array. For the rest of the setups, this algorithm is repeatedly applied in the order of
the setup sequences discussed in Sect. 4. The toolset array subsequently stores all
the possible tool sets for a part.

Fig. 11 An internal turning tool type with face direction patterns and constraints

206 C. Chung and Q. Peng

www.manaraa.com

5.1.3 Tool Selection

Once possible tool sets (i.e., toolSet[][] in Algorithm 1) are created, the next step is
to rank each tool set with weighting factors related to production time and cost. An
optimized equation (see Appendix 10) is used for ranking, as suggested by Usher
and Fernandes [16]. In Appendix 10, Eqs. (7) and (8) are used to calculate pro-
duction time and cost, respectively. The best tool set to machine a whole part will
be the set with the minimum score after calculating with Eq. (9) from the
Appendix 10. The equation determines the minimum value of combining pro-
duction time and cost.

A total cutting length (L) is required to calculate machining time [i.e.
Tm ¼ L=ðfr � NÞ] in Eq. (7). The total cutting length is determined as a machining
volume (MV) divided by the required cutting depth for a machining process. In
this method, several algorithms are developed to build 2D MVs. As shown in
Fig. 13a, there is a set of manufacturing faces to be machined at a setup.

By contouring the geometry defined by the manufacturing faces, an MV is first
generated for a fine or finishing process as shown in Fig. 13b. The depth (e) in

Fig. 12 Creation of possible tool sets based on tool alternatives

Data Representation and Modeling for Process Planning 207

www.manaraa.com

Fig. 13b is determined here to allow three cuts for the generated MV. As shown in
Figs. 13c and d, other MVs for rough cutting are subsequently generated and
merged via the algorithms suggested in this chapter.

In calculating the machining time using Eq. (7) (see Appendix 10), the most
rigid tool in a recommended tool set is first assigned to machine the generated
MVs for rough cutting. Then, each tool in the tool set is used to machine the MV
for the finishing process. The machining parameters such as depth of cut, feed rate,
cutting speed, and tool life are collected from tool manufacturers’ catalogs [12]
and stored in the knowledge DB. Appendix 8 summarizes knowledge tables used
for calculating machining parameters, and presents an equation to calculate the
optimized cutting speed using the knowledge tables.

5.2 Machine Selection

The machine selection for a particular part is similar to the process of tool
selection. A DB search algorithm is presented to efficiently search the machine DB
using a dynamic SQL query based on defined searching criteria. It is also
advantageous to reduce the number of available machines retrieved from the
machine DB. Constraints used to select a machine include machine availability,
maximum turning diameter and length, maximum spindle speed, maximum motor
power, and tail stock stroke. These constraints are inserted into a dynamic SQL
query to search appropriate machine alternatives for a tool set. Figure 14 shows
the developed DB search algorithm for the machine selection.

For a given tool set, such constraints as the required maximum spindle speed
and maximum motor power are determined by consulting the knowledge tables
and equations in Appendixes 8 and 11. The knowledge tables and equation are also
summarized in Appendix 11 based on the tool manufacturer’s handbook [13]. As a
searching criterion, the machine availability is simply examined by checking the
two time-related fields used in the machine DB, such as lm_machine_start_date

Fig. 13 Machining volume generation in this research

208 C. Chung and Q. Peng

www.manaraa.com

and lm_machine_end_date of the tblLatheMachine table (see Appendix 1). These
two fields are updated when a lathe machine is reserved for a part to be manu-
factured. The DML of the SQL is used for this update process (i.e., an UPDATE
statement).

As shown in Fig. 14, the best tool set ranking method that has been described in
Sect. 5.1.3 is first applied in the procedure for retrieving possible machine alter-
natives. If there is no machine matched, then there are two options: the user can
change the time schedule of machine usage, or the second-best tool set can be
applied by the user. When the process is complete, machine alternatives selected
for a tool set are stored in OODBs, named MachineOODBs (see Appendix 12).

To select the best machine in MachineOODBs for a tool set, a machine cost
model is developed. The machine cost model consists of two parts: machine
capital cost and maintenance cost. Thus, the developed cost model for a single
machine selection is described by Eq. (5).1

Is Found Machine Matched

"SELECT DISTINCT * FROM tblLatheMachine WHERE " +
"lm_motor_power > "+maxPower+"AND lm_swing_over_bed >" +
mat_size[0]+"AND lm_machining_length > "+mat_size[1]+" AND " +
"lm_min_spindle_speed < "+vmin+" AND lm_max_spindle_speed >" +
vmax +" AND lm_tail_stock_stroke > " + mDepth + "AND " +
"lm_machine_start_date > " +machineReqEndDate +" OR " +
"lm_machine_end_date < " +machineReqStartDate;

Search Machines from machine DB

Calculate maximum geometry constraints

Store data in to OODB to the Client Side

Calculate Machine cost factor

Calculate maximum machining parameters

Select the best machine for the tool set

N

Y

Scheduled date to machine

Best tool set to machine a part

User request to change tool
sets, or scheduled date to

machine

Fig. 14 DB search flow chart to retrieve possible machine alternatives

1 The symbols used in Eq. (5) can be found in the Notations list at the beginning of this chapter.

Data Representation and Modeling for Process Planning 209

www.manaraa.com

Cm ¼
Xq

i

Co

EIDL
þMTTR

MTBF
� Pcm

� �
� AOR

� �

i

þ
Xq

i

Xr

j

TFj � ETj

� �
� Ppm

 !

i

¼
Xq

i

Co

EIDL
þMTTR

MTBF
� Pcm

� �
� AORþ c

� �

i

ffi Co

EIDL
þMTTR

MTBF
� Pcm

� �
� AORþ c ð5Þ

Two system effectiveness measures are used in this equation: mean time
between failures (MTBF) and mean time to repair (MTTR). MTBF represents how
often a machine is failing, while MTTR represents the mean of the distributions of
the time-intervals needed to repair an item. In Eq. (5), the value of a machine is
reduced annually, and it will eventually become zero when the machine life equals
its design life, which is called end item design life (EIDL). This value can
therefore be normalized based on annual operation requirements (AOR).

The maintenance cost is divided into preventive and corrective maintenance
cost. With respect to scheduled preventive maintenance intervals, preventive
maintenance cost can be defined as the annual cost to perform tasks such as
adjustment, servicing, calibration, and inspection without including any machine
failure. On the other hand, corrective maintenance cost (with respect to MTBF and
MTTR for corrective maintenance) can be defined as the cost to perform tasks such
as repair, replacement, and operational and functional tests, in addition to the same
tasks of preventive maintenance done with machine failure. Equation (5) is the
result normalized by AOR to give the two categories the same dimension.

6 Processing Simulation

6.1 Graphical User Interface

As shown in Fig. 15, a graphical user interface (GUI) is implemented for simu-
lation of process planning. The main GUI in Fig. 15 consists of five components:
(1) an applet for server selector, (2) an applet for feature and face managements,
(3) an applet for Java 2D, (4) an applet for part and machining information, and (5)
a VRML browser. Three sub-GUIs based on the Java Frame class support users in
three activities: (1) selecting a part DXF and choosing its material, (2) providing
input parameters used in tools and machines selection, and (3) showing a gener-
ated process plan that is used for machining simulation.

6.2 Data Communication for Simulation

Data communication between the simulation and process plan is supported by the
interaction between Java and the virtual reality modeling language external

210 C. Chung and Q. Peng

www.manaraa.com

authoring interface (VRML-EAI). Figure 16 represents the implementation of
communication between a Java applet and a VRML plug-in. With the external
authoring interface (EAI), it is possible for an applet method in a standard Web
browser to access the scene graph of an embedded VRML plug-in. As shown in
Fig. 16, the EAI provides two important services: enabling external programs to
read and change the scene graph, and enabling external programs to register some
of their functions as callbacks. Every callback is bound to an event. Whenever this
event is generated in the VRML scene, the browser invokes the associated callback
function and passes the current value of the event as an argument.

VRML plug-in

Feature
management

Face management

Part & virtual machining
information

Parameter-setup dialog box

Java 2D

File open dialog box

Process plan window

Fig. 15 GUI for process planning

Data Representation and Modeling for Process Planning 211

www.manaraa.com

The following is a part of the program description:

Fig. 16 Implementation of communication between a Java applet and a VRML plug-in in a
Web-based client application

212 C. Chung and Q. Peng

www.manaraa.com

This program first imports a Java package called vrml.eai, provided by the
Cortona VRML plug-in. The package contains classes and sub-packages of the
EAI. An EAI interface called VrmlEventListener is implemented to allow a VRML
browser to invoke a callback occurring at a VRML object; subsequently, the applet
receives an event message from the VRML browser. Inside the program, a VRML
browser is declared with EAI variables including EventOutSFBool and Event-
OutSFVec3f. In particular, these variables are assigned to parts in a retrieved
product from a DB, and used to receive event messages from the VRML browser.
If an object in the VRML browser is touched by a user, for instance, the value of
its EventOutSFBool variable changes and this result is signalled to the applet.

The following are Java program codes written in a Java method called start(), in
which VRML browsers, VRML nodes, and accessible VRML variables are
sequentially defined. This program shows how to define the touch sensors of
components in a Java applet. The touch sensors are efficiently used for an inter-
action between a user and VRML objects.

For instance, a VRML browser, browser0, is obtained within a Java applet by
calling up the BrowserFactory.getBrowser() method. Then, its nodes are defined
by invoking the getNode() method. The nodes shown here are VRML touch sensor
nodes, each of which is attached to a component. An eventOut variable (e.g.,
isActive) of the defined VRML node is assigned to an a_TouchSens_changed
variable declared in a Java applet. Subsequently, this a_TouchSens_changed
variable interfaces with VrmlEventListener to await an event message. Moreover,

Data Representation and Modeling for Process Planning 213

www.manaraa.com

each a_TouchSens_changed variable is given a serial number by invoking the
setUserData() method. This allows quick identification of a VRML object gen-
erating an event message during user-VRML interactions.

In the above program code, a defined touch sensor node is the one bound with
DEF to the node named tParti in a VRML file. DEF in VRML is a VRML
keyword and enables a VRML node to have a specific name which enables other
nodes to call it by the unique name. Node names such as tParti and tFasteneri

should be predefined within an empty Transform node in a VRML file (*.wrl).
Figure 17 shows a predefined VRML file, which is integrated into an HTML file
with the HTML tag \embed[.

As shown in Fig. 17, a VRML node bound with DEF can be dynamically
controlled by a Java program. For instance, Part0 node in the VRMLScene1.wrl is
used to represent part geometry, appearance, and transformations, while its
embedded touch sensor called tPart0 is used to generate an event message during
user-VRML interactions. Moreover, other empty nodes in Fig. 17 are predefined in
the VRML file, including time sensors, position interpolators, and color interpo-
lators. These nodes are used to implement 3D process planning simulation.

Fig. 17 VRML file integrated into an HTML file

214 C. Chung and Q. Peng

www.manaraa.com

Once VRML browsers, VRML nodes, and accessible VRML variables are
defined, the Java program waits for an event message generated in a VRML
browser. A VRML-EAI method named eventOutChanged() accomplishes this
function in the Java program. The following Java program code describes how this
method is applied:

In this program, an event message is delivered from a VRML browser to
eventOutChanged() method in the Java applet program. The program then finds
the assigned number of the VRML object that generates the event. Based on this
number and a function key triggered by a user, the program invokes various
interactions including loading, hiding, deleting, showing, highlighting, and moving
a VRML object. The following sections describe two major interactions imple-
mented for static and dynamic VRML-EAI-Java interactions.

6.3 Static Interaction

The static interaction manipulates three properties of a simulation object: its
geometry, its appearance (e.g., colors, lighting, and, textures), and the transfor-
mations of its position, orientation, and scaling. A getEventIn() node is used to
allow an external program to change the properties of the simulation object.

Data Representation and Modeling for Process Planning 215

www.manaraa.com

Geometry represented by VRML can be defined and deleted by manipulating
the addChildren and deleteChildren property of a target VRML node. EventIn
typed variables in VRML are used to set a value into the VRML node. For
instance, the following Java program codes describe how to load a VRML model
into a VRML browser. In the program code, the EventInMFNode typed variable
called set_ROOT_addChildren is declared to handle the addChildren property of
the target node. Then, the Node[] typed variable called node initially stores the
actual VRML code of a component to be loaded. This VRML code is text based
and dynamically generated by Java. The defined node variable is transferred to the
VRML node via the setValue() method.

Similarly, the appearance and transformations of a node are also set or changed
by manipulating node properties with getEventIn() and setValue() methods. For
instance, node appearance (including color, lighting, and texture) changes through
the manipulation of such properties as transparency, diffuseColor, emissiveColor,
shininess, and specularColor. The method applies this appearance manipulation
for several user-interactive effects, including selecting, hiding, and showing a
VRML object. The following Java program codes describe how to highlight a
VRML object with user selection:

216 C. Chung and Q. Peng

www.manaraa.com

In this program code, all VRML objects in a VRML browser are changed to
their original colors by setting the diffuseColor property via the getEventIn() and
setValue() methods. Then, a pre-defined color is assigned to a selected VRML
object by nodeName.

6.4 Dynamic Interaction

Dynamic interactive simulation is implemented by VRML interpolators including
PositionInterpolator and ColorInterpolator. These VRML interpolators create a
time-dependent simulation with a VRML object. The basic concept of these in-
terpolators is illustrated in Fig. 18. As shown in the figure, a clock based on
TimeSensor starts generating events immediately after it is created. The value of its
eventOut fraction_changed is a type of SFFloat (single float data type) and its
value is in the interval key value [0, …, 1]. Subsequent events have increasing
values. By default, if the end of the interval is reached, no more events are
generated. If the field loop has true value, then, when reaching the end of the
interval, the clock starts over at the beginning of the interval. As shown in Fig. 18,
the event fraction_changed is routed to the event_fraction for either PositionIn-
terpolator or ColorInterpolator. This node generates the eventOut value_changed
of type SFVec3f (e.g., positions in 3D space or RGB color codes). These are sent to
such eventIn properties as set_translation, set_scale, and set_diffuseColor.

Figure 19 shows the concept of the interaction process in brief. OOMFs and a
generated process plan are imported into the VRML simulation module. The
OOMFs are used to define a number of cylinders for simulating a lathe machining
process. The radius of each VRML cylinder node is the same size as that of a
chosen work-piece, and its thickness is assigned a default value, 0.5 mm. There
would thus be 480 VRML cylinders defined when selecting an initial work-piece
of 240 mm.

Fig. 18 Basic animation concept of VRML interpolators

Data Representation and Modeling for Process Planning 217

www.manaraa.com

Process tables in Fig. 19 are formed by the defined cylinders and the generated
process plan. In a sequence, each MV consists of a series of VRML cylinders. When
a tool moves along an MV, its cylinders are resized by manipulating the set_scale

Fig. 19 VRML-EAI-Java interaction for the machining process machining process

218 C. Chung and Q. Peng

www.manaraa.com

property of the Transformation node. Once process tables are completely formed, a
dynamic VRML-EAI-Java interaction is executed as shown in Fig. 19. At each
cylinder that belongs to an MV to be machined, the following processes are
repeatedly executed: (1) calculation of keyValue [Current_Tool_Position, Next_
Tool_Position], (2) initiation of a PositionInterpolator, (3) transmission of the
keyValue[] to the PositionInterpolator, (4) a tool move and stop, and (5) an update
of coordinate and machining information including accumulated machining time.

The following Java program code describes how to implement tool position
interpolation and resize a VRML cylinder according to the process shown in Fig. 19.

Data Representation and Modeling for Process Planning 219

www.manaraa.com

7 Examples

To evaluate the proposed method, two examples of rotational parts are tested.
Tooling data for process planning are collected from product catalogs [12] and
stored in the tool DB. The tool DB contains 4,200 tools, including external,
internal, grooving, and threading tools. External turning tools consisting of various
external holders and inserts are listed in the MySQL query test window shown in
Fig. 20. The transaction result shown is generated via a SELECT query based on
the DML of SQL. From the tool DB, this query retrieves only the tool information
satisfying its selection criteria. The data from five computer numerical control
(CNC) machines are stored in the machine DB. However, most information related
to the machines is assumed in Table 1.

As shown in Table 1, an EIDL of 60,000 operation hours is given to all the
machines equally, and machine cost is assumed in accordance with the complexity
of the machines. The mean time between failures (MTBF) is used to measure the
machine reliability. Based on this notion, it is assumed that more complex
machines are more reliable in accomplishing their missions, although they come
with a much higher maintenance cost. This assumption is supported by the fun-
damental concepts of existing engineering design, such as redundancy, fail-safe, or
damage tolerance design.

A similar assumption is used for mean time to repair (MTTR) for corrective
maintenance. The more expensive machines are normally design for easy repair so
that the MTTR can be reduced. The self-diagnosis function, the built-in test (BIT),
and modularization for easy replacement, can support this assertion. In spite of
lower MTTR, the maintenance cost rate of the more expensive machines is much
higher. The maintenance cost, including preventive and corrective maintenance
costs, consists of the costs associated with diagnosis, spare parts, and paying
skilled personnel.

Fig. 20 Transacted result of external turning tools in the tool DB

220 C. Chung and Q. Peng

www.manaraa.com

7.1 Example 1

As shown in Fig. 21, a part is tested to evaluate the approach developed here. The
part is made of the heat- and creep-resistant steel that is classified in the M1 group
(see Appendix 8) based on ISO 513, and has a hardness of 300 HB (Brinell
hardness). The part has four specified tolerance limits, consisting of one geometric
and three-dimensional tolerance limits. In particular, the concentricity with the
[0.05 mm tolerance is applied to the geometric tolerance. Based on the geometric
entities obtained from the DXF, OOMFs are defined by the algorithms developed
in Sect. 3. As shown in Fig. 22, 17 OOMFs are defined for this example, and 25
manufacturing faces are derived from the OOMFs.

Table 1 Assumed machine data

Machine model Machine
cost (C$)

EIDL
(h)

MTBF
(h)

MTTR
(h)

Preventive maint.
cost per Year
(C$/Year)

Corrective
maint. cost rate
per hour
(C$/h)

10HC DAEWOO
Horizontal
Lathe

80,000 60,000 100,000 20 400 800

TUR-630 M 30,000 60,000 30,000 85 200 400
CJK0620 NC Lathe 40,000 60,000 20,000 100 200 400
CJK0632 NC Lathe 50,000 60,000 20,000 100 200 500
CJK6125 NC Lathe 55,000 60,000 20,000 100 200 550

Fig. 21 Sample part

Data Representation and Modeling for Process Planning 221

www.manaraa.com

The 25 derived manufacturing faces shown in Fig. 22b are used to assign the
geometric and dimensional tolerance limits given in Fig. 21. Tolerance factors for
the manufacturing faces are then calculated to carry out the setup planning and
sequencing presented in Sect. 4. Thus, Fig. 23 shows the tolerance factor graph
based on the tolerance limits that are given to the sample part. This graph is used to
make its adjacency matrix T (see Appendix 6). The tolerance factor graph is a
weighted, undirected graph G = (V, E), representing the relative tolerance
information of a part. The manufacturing faces within the part are represented as
the vertices V ¼ f1; f2; . . .; fnf g: The relative tolerance information is represented
using the weighted edges E ¼ e1; e2; . . .; emf g: If the value of a weighted edge

Fig. 22 Definition of OOMFs and manufacturing faces for the sample part: a 17 OOMFs
generated from the DXF, and b 25 manufacturing faces derived from the OOMFs

f1

f10
f13

f8

f11

3.33×10
-4

5.0×10 -4 5.1×10-4

Fig. 23 Tolerance factor
graph based on tolerance
limits that are assigned to the
sample part

222 C. Chung and Q. Peng

www.manaraa.com

between two manufacturing faces, fi and fj, is small, it might be better if these two
faces belong to the same set of sequences to be machined. Thus, the machining of
the two manufacturing faces at one setup is likely to satisfy the given tight tol-
erance requirement.

As shown in Fig. 22, the manufacturing faces f1 and f10 have small relative
tolerance values associated by weighted edges. However, the two manufacturing
faces cannot be machined at one setup owing to their different tool approach
directions. As shown in Fig. 22b, the manufacturing face f1 can be machined by a
left-approaching tool, while the manufacturing face f10 requires a right-
approaching tool. Similarly, the manufacturing faces f1 and f13 also cannot belong
to the same setup sequence. On the other hand, it is highly recommended that the
manufacturing faces f8 and f11 be put into the same setup sequence.

Based on the setup planning and sequencing algorithm used, two set-up
sequences are generated with datum information. Table 2 describes the generated
setup sequences for the sample part shown in Fig. 21.

In Table 2, the first setup sequence includes both external and internal turning
processes, while the second setup sequence includes only an external turning
process. As discussed before, the manufacturing faces f8 and f11 in Table 2 belong
to the second setup sequence of the setup planning and sequencing process.

In addition, manufacturing faces at each setup in Table 2 are used to form a
manufacturing face direction to search tool alternatives via the DB search algo-
rithm, which is discussed in Sect. 5.1. For instance, an external manufacturing face
direction is initially generated with manufacturing faces f1, f2, f3, f4, f5, f6, and f7,
and its numeral values become 345453C in the right-approaching tool direction,
where C represents CCW. This implies that a tool cuts all the external faces at the
first setup. The face direction is then inserted in a dynamic SQL query with other
search criteria, including the required tool material type. This SQL query is sent to
the DB server, and is used to search the matched turning tool alternatives. If there
is no tool matched, the number of manufacturing faces is reduced, and a new SQL
query is formed to search the matched tool alternatives for the reduced manu-
facturing faces.

Possible tool sets are created with the tool alternatives that are retrieved by the
developed DB search algorithm. These tool sets are used for the ranking process
(see Appendix 10), including the creation of MVs based on the setup sequences in
Table 2. In particular, four user-defined parameters are used in this ranking pro-
cess: (1) a tool setup time of 12 min, (2) a pay rate of $0.2 per minute, (3) a
weighting factor for production cost of 0.5, and (4) a weighting factor for pro-
duction time of 0.5. The calculation of production time for the ranking process
uses a standard tool-indexing time that is pre-stored in the tool DB. This indexing

Table 2 Generated setup sequences for the sample part

Setup ID Datum Manufacturing faces

1 f8, f21 f1, f2, f3, f4, f5, f6, f7, f22, f23, f24, f25

2 f1, f5 f21, f20, f19, f18, f17, f16, f15, f14, f13, f12, f11, f10, f9, f8

Data Representation and Modeling for Process Planning 223

www.manaraa.com

Fig. 24 Best tool set selected for the sample part: a E3941: PWLNR-1616H06-S, b E2579:
SDJCR-1616H11-S, and c I164: SDUCR07-S

Fig. 25 Generated process plan (a) and its virtual simulation (b), including � the first setup, `

the rough-turning process at the first setup, ´ the second setup, ˆ the rough-turning process at the
second setup, and ˜ completion of the simulation

224 C. Chung and Q. Peng

www.manaraa.com

time depends on the type of tool insert and tool holder. Figure 24 shows the best
tool set selected to machine the sample part according to the ranking process
described here.

Figure 24 shows a tool set consisting of three turning tools. This tool set ranks
first in possible tool sets. As an external turning tool, the tool E3941 shown in
Fig. 24a is selected based on manufacturing faces f1, f2, f3, f4, f5, f6, and f7 in
Fig. 22b. At the first setup in Table 2, this tool is combined with the internal
turning tool I164 shown in Fig. 24c. The tool E2579 shown in Fig. 24b is selected
based on all the manufacturing faces at the second setup in Table 2.

All the tools in Fig. 24 entail the use of the same insert grade of 836, which
requires TiN multi-layers coated via the physical vapor deposition (PVD) process.
These tool-clamping types require the use of large rigidity tools such as P- and S-
types, which allow a stable machining process. The inserts used, of W- and D-
types, are versatile enough to reduce production time and cost by minimizing tool
setup time.

In the machine selection with the tool set shown in Fig. 24, the 10HC DAE-
WOO horizontal lathe is suggested as the most economical machine, despite the
fact that its machine capital cost and maintenance cost are the most expensive
among the machines in the machine DB, owing to the 10HC DAEWOO horizontal
lathe having the highest MTBF and the lowest MTTR among the machines.
However, the appropriateness of assumed data in machine selection can be also
verified by applying traditional analysis procedures such as failure mode analysis,

Fig. 26 Sample part

Data Representation and Modeling for Process Planning 225

www.manaraa.com

Setup
ID

Clamp Datum
Sequence of operations

Seq. ID
Machining

Volume
Tool ID

Speed
(m/min)

Feed Rate
(mm)

Cut-depth
(mm)

1 f12 f22

1-1 MV 10, 11

E760 138 0.6

4.0

1-2 MV 9

1-3 MV 7, 8

1-4 MV 6

1-5 MV 5

1-6 f3, f4

1-7 f6, f11 E2382 138 0.6 4.0

2 f9 F1

2-1 MV 20, 21

E1450 138 0.6

4.0

2-2 MV 18, 19

2-3 MV 17

2-4 f19

2-5 f16, f13 E2382 138 0.6 4.0

2-6 f21 E2148 109 0.6 4.0

2-7 MV 24

I59 138 0.6 4.02-8 MV 22, 23

2-9 f25

(a)

(b)

(c)

Fig. 27 Summary of the process planning for the part illustrated in Fig. 26: a generated MVs,
b selected tool set (� E760: MVJNR-2525M16-S, ` E1450: PCLNR-2020K12-S, ´ E2148:
PRSCR-3225P16-S, ˆ E2382: PSSNR-2020K12-S, and ˜ I59: A32S-PSKNR12-S), and
c detailed process plan

226 C. Chung and Q. Peng

www.manaraa.com

quality effects and criticality analysis, reliability and maintainability analysis, and
maintenance task analysis. Figure 25 shows a generated process plan for this
sample part, and its simulation process.

7.2 Example 2

As shown in Fig. 26, another part is tested to evaluate the approach developed.
The part is made of non-alloyed carbon steel that is classified in the P1 group (see
Appendix 8) based on ISO 513, and has a hardness of 300 HB.

This part is converted to 18 OOMFs, from which 26 manufacturing faces are
derived. These faces are used to assign the geometric and dimensional tolerance
limits given in Fig. 27. After the setup planning, sequencing processing, and tool
and machine selection, a process plan is generated with a recommended tool set
and machine. The same resources and parameters as those used in the first example
are applied here. Figure 27 shows a summary of the process planning for the part
illustrated in Fig. 26. As shown in Fig. 27b, five tools with the first rank in the
possible tool sets are selected; their inserts are V-, C-, and S-types that are versatile
and economical enough to reduce production time and cost. The used insert grades
of these tools can be 320P, 525P, or TiC/TiCN/TiN multi-layer coated grade which
is produced through the chemical vapor deposition (CVD) process. In the machine
selection, the 10HC DAEWOO horizontal lathe is also suggested as the most
economical machine, owing to its minimal maintenance cost.

8 Summary

This chapter presented an approach to process planning that proposes to generate a
process plan with tool and machine alternatives based on a dynamic manufacturing
environment.

For the tool and machine selection discussed in this chapter, data search
algorithms and knowledge have been developed and implemented via relational
database (RDB) technologies. The RDB technologies help to efficiently define and
transact a large amount of tool- and machine-related information in the database.
Various OODBs based on the OOP technique are used to efficiently manipulate the
retrieved tool- and machine-related information. The OODBs are subsequently
applied in tool and machine selection based on weighting factors of production
cost and time. Once tools and machines are selected for the process plan of a part,
they become unavailable until the part is completely manufactured on the shop
floor. An UPDATE statement based on the DML of the SQL is used to change the
availability state of the selected tools and machines in the DBs—it simply sets DB
fields related to tool quantity and date for machine usage.

Data Representation and Modeling for Process Planning 227

www.manaraa.com

Based on the approach presented in this chapter, a process plan can be gen-
erated with feasible tool and machine alternatives. This process plan can be used to
quickly exploit manufacturing opportunities for a specific product at the inter-
enterprise level, and to realize fabrication at the shop floor level. In addition, the
process plan can provide manufacturing systems with a reduced number of feasible
‘‘what-if’’ scenarios for fabrication, and can execute a practical assessment of
manufacturability and a reliable estimation of manufacturing time and cost. The
reliable estimation is efficiently reached by using the selected tools and machines,
which are used to calculate machining cycle data such as the depth of cut, speed,
feed rate, and cutting time. Although the rotational components are only used in
examples for the proposed methods, the described concepts can be extended to
process planning for other shapes of components such as non-rotational parts.

Appendix 1 Database Models for Process Planning

A.1.1 Data Modeling for External Insert Holder

Figure 28

Fig. 28 Data model external insert holder

228 C. Chung and Q. Peng

www.manaraa.com

A.1.2 Data Modeling of Insert for Turning

Figure 29

A.1.3 Data Modeling for Internal Insert Holder

Figure 30

Fig. 29 Data model of insert for turning

Fig. 30 Data model of internal insert holder

Data Representation and Modeling for Process Planning 229

www.manaraa.com

A.1.4 Data Modeling of Insert Holder for Threading

Figure 31

A.1.5 Data Modeling of Insert for Threading

Figure 32

Fig. 31 Data model of insert holder for threading

Fig. 32 Data model of insert for threading

230 C. Chung and Q. Peng

www.manaraa.com

A.1.6 Data Modeling of Turning Tool

Figure 33

A.1.7 Data Modeling of Threading Tool

Figure 34

Fig. 33 Data model of turning tool

Fig. 34 Data model of threading tool

Data Representation and Modeling for Process Planning 231

www.manaraa.com

A.1.8 Data Modeling of Numerical Control Lathe Machine

Figure 35

Fig. 35 Data model of NC lathe machine

232 C. Chung and Q. Peng

www.manaraa.com

Appendix 2 Flowchart of Obtaining Geometry Entities
from DXF Representations

Figure 36

FIND “ENTITIES”

SET i=0

i=i+1

i=i+1

LINEi=“10”

TYPE=“C”

i=i+1

LINEi=“20”

X0=LINEi

i=i+1

LINEi=“40”

Y0=LINEi

i=i+1

LINEi=“AcDbEntity”
OR “EndSec”

OPT=LINEi

i=i+1

LINEi=“50”

X1=LINEi

i=i+1

LINEi=“51”

Y1=LINEi

LINEi=“10”

TYPE=“L”

i=i+1

LINEi=“20”

X0=LINEi

i=i+1

LINEi=“11”

Y0=LINEi

i=i+1

X1=LINEi

i=i+1

LINEi=“21”

Y1=LINEi

blnNextCircle

**CALCULATE (Pp, P)
Xc, Yc, r, ∅s, ∅t

TYPE=”C”;X0=Xc;Y0=Yc;
OPT=r;X1=∅s;Y1=∅t

blnNextCircle=false

LINEi=”AcDbEntity”
OR “EndSec”

i=i+1

OPT=LINEi
blnNextCircle=true
X0p=X0;Y0p=Y0;
X1p=X1;Y1p=Y1

LINEi=“AcDbEntity”
OR “EndSec”

j=0, k=0

i=i+1

LINEi=“10”

Xkj=LINEi

i=i+1

LINEi=“20”

Ykj=LINEi

k>0

**CALCULATE (Pp, Pj)
 Xc, Yc, r, ∅s, ∅t

TYPE=”C”;X0j=Xc;Y0j=Yc;
OPT=r;X1j=∅s;Y1j=∅t

PblnNextCirc=false

i=i+1

LINEi=”AcDbEntity”
OR “EndSec”

LINEi=“42”

LINEi=“10”

OPTj=LINEi; k=0
PblnNextCirc=true
X0p=X0j;Y0p=Y0j
X1p=X1j;Y1p=Y1j

LINEi=“EndSec”

End

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y
k=k+1

N

Y
N

Y

PblnNextCirc

N

Y

j=j+1; k=1
X0j=X0j-1
Y0j=Y1j-1

P
blnN

extC
irc

N

Y

j=j+1

N

Y

N

Y

Y

N

N

Y

N

Y

N

Y

LINEi=“42”

j=j+1

N

Y

i=i+1

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y

LINEi=NOT “EndSec” AND
“AcDbEntity”

LINEi=“AcDbLine” OR “AcDbCircle”
OR “AcDbPolyLine”

LINEi=“AcDbLine”

LINEi=“AcDbCircle”

Fig. 36 Flowchart of obtaining geometry entities from DXF representations

Data Representation and Modeling for Process Planning 233

www.manaraa.com

Appendix 3 Decision-Making Diagrams for Feature Definition
Based on Obtained Geometric Entities

A.3.1 Tangent Line Entity-Based Decision-Making Diagram
for Feature Definition

Figure 37

Fig. 37 Tangent line entity-based feature definition diagram

234 C. Chung and Q. Peng

www.manaraa.com

A.3.2 Circular Entity-Based Decision-Making Diagram
for Feature Definition

Figure 38

Fig. 38 Circular entity-based feature definition diagram

Data Representation and Modeling for Process Planning 235

www.manaraa.com

Appendix 4 Structure of ManufFeature Java Class

236 C. Chung and Q. Peng

www.manaraa.com

Appendix 5 Several Examples of Tolerance Factors Defined
in this Chapter

Figure 39

Fig. 39 Example tolerance factors

Data Representation and Modeling for Process Planning 237

www.manaraa.com

Appendix 6 Setup Planning and Sequencing Algorithms

A.6.1 Nomenclatures

n Number of manufacturing faces within a rotational component
fi Manufacturing faces, i ¼ 1; 2; � � � ; n
K0 Set of manufacturing faces that exist on the stock
Ki Set of manufacturing faces that exist after the work-piece was

machined in the ith setup
X Set of manufacturing faces that are suitable for location or clamping
XðKiÞ Set of manufacturing faces that are suitable for location or clamping

after the work-piece has been machined in the ith setup
C Set of manufacturing faces that are cylindrical surfaces
P Set of manufacturing faces that are plane surfaces
O Set of manufacturing faces that are cone surfaces
A1 Set of manufacturing faces that can be machined from the left side of

the component
A2 Set of manufacturing faces that can be machined from the right side of

the component
A3 Set of manufacturing faces that can be machined from either the right

side or left side of the component
T ¼ ½tij� Adjacency matrix of the tolerance factor graph, i; j ¼ 1; 2; . . .; n

A.6.2 Mathematical Formulation

Set of manufacturing faces:

F ¼ f1; f2; . . .; fnf g

Stock geometry vector:

K ¼ k1; k2; . . .; knf g

ki ¼
1 if face fi exists on the stock

0 otherwise i ¼ 1; 2; . . .; n

Fixturing vector:

X ¼ x1; x2; . . .; xnf g

xi ¼
1 if face fi is suitable for locating or clamping

0 otherwise

i ¼ 1; 2; . . .; nð Þ

238 C. Chung and Q. Peng

www.manaraa.com

Cylindrical vector:

C ¼ c1; c2; . . .; cnf g

ci ¼
1 if face fi is a cylindrical surface

0 otherwise

i ¼ 1; 2; . . .; nð Þ

Plane vector:

P ¼ p1; p2; . . .; pnf g

pi ¼
1 if face fi is a plane surface

0 otherwise

i ¼ 1; 2; . . .; nð Þ

Cone vector:

O ¼ o1; o2; . . .; onf g

oi ¼
1 if face fi is a cone surface

0 otherwise

i ¼ 1; 2; . . .; nð Þ

Tool approach vector:

A ¼ a1; a2; . . .; anf gT

ai ¼

½1; 0� if fi can be machined only from the left side

½0; 1� if fi can be machined only from the right side

½1; 1� if fi can be machined either from the left side

or from the right side

8
>>><

>>>:

Tolerance factor (Relative tolerance):

T ¼ ½tij�; t ¼ 1
Pm

i¼1
1
ti

Data Representation and Modeling for Process Planning 239

www.manaraa.com

A.6.3 Setup Planning and Sequencing Algorithm

240 C. Chung and Q. Peng

www.manaraa.com

Data Representation and Modeling for Process Planning 241

www.manaraa.com

Appendix 7 Tolerance-Grade Conversion Table
with Corresponding Machining Processes

A.7.1 IT-Numbers Based on Tolerance Coefficients

Grade Tolerance coefficient Grade Tolerance coefficient

IT5 7 IT11 100
IT6 10 IT12 160
IT7 16 IT13 250
IT8 25 IT14 400
IT9 40 IT15 640
IT10 64 IT16 1,000

242 C. Chung and Q. Peng

www.manaraa.com

A.7.2 Machining Processes Corresponding to IT-Numbers

Data Representation and Modeling for Process Planning 243

www.manaraa.com

Appendix 8 Summary of Knowledge Tables
for Calculating Machining Parameters

A.8.1 Material Classifications According to ISO 513

A.8.2 Insert Grades According to ISO 513

Chemical vapour deposition (CVD) Physical vapour deposition (PVD) Uncoated

320P 210K 525P 530P 535P 816 836 S10 S20 HF7 HF10
TiC/TiCN/TiN Multi-layer coated TiN coated

Material Description
PI Carbon steels non-alloyed

Carbon cast steels
Carbon tool steels
Low alloyed steels

PII Alloyed and medium alloyed steels
Low and medium alloyed steels
Alloyed tool steels
Ferritic and martensitic corrosion-resistant steels

MI Austenitic and Ferritic-Austenitic corrosion-resistant, heat-resistant,
and creep-resistant steels
Nonmagnetic and abrasive resistant steels

MII Special creep-resistant Ni, Co, Fe, and Ti-based alloys
MIII Heat-treated steels with hardness 48–60 HRC

Hardened ingot-mould iron with hardness 55–85 HSH
KI Grey cast iron alloyed and non-alloyed

Nodular cast iron
Malleable cast iron

KII Non-ferrous metals
Al alloys
Cu alloys

244 C. Chung and Q. Peng

www.manaraa.com

A.8.3 Basic Cutting Speed in Turning

M Turning Tool Materials/cutting speed,mc15 (m-min-1)

Type Grade

320P 210 K 525P 530P 535P 816 S10 S20 836 HT7 HF10

PI Fine turning S 340 290 280 – – 220 210 180 – – –
C,W 340 290 280 – – 220 210 180 – – –
T 340 290 260 – – 220 190 170 – – –
D 330 270 260 – – 210 190 170 – – –
V 330 270 260 – – 200 190 160 – – –
R 340 290 280 – – 220 210 180 – – –

Finishing S 300 250 245 240 – – – – – – –
C,W 300 250 245 240 – – – – – –
T 290 240 230 225 – – – – – – –
D 280 240 230 225 – – – – – – –
V 290 230 220 210 – – – – – – –
R 300 250 245 240 – – – – – – –

Semi-roughing S 235 195 180 175 – – – – – – –
C,W 235 195 180 175 – – – – – – –
T 225 185 170 165 – – – – – – –
D 225 185 170 165 – – – – – – –
V 215 175 160 155 – – – – – – –
R 235 195 180 175 – – – – – – –

Roughing S 165 – 135 130 120 – – – – – –
C,W 165 – 135 130 120 – – – – – –
T 155 – 125 125 110 – – – – – –
D 155 – 125 125 110 – – – – – –
V 155 – 125 125 110 – – – – – –
R 165 – 135 130 120 – – – – – –

PII Fine turning S 260 225 210 – – 165 155 135 – – –
C,W 260 225 210 – – 165 155 135 – – –
T 260 225 195 – – 165 140 125 – – –
D 240 210 195 – – 155 140 125 – – –
V 240 210 195 – – 150 130 115 – – –
R 260 225 210 – – 165 155 135 – – –

Finishing S 230 190 180 175 – – – – – – –
C, W 230 190 180 175 – – – – – – –
T 220 180 170 165 – – – – – – –
D 220 180 170 165 – – – – – – –
V 220 180 165 160 – – – – – –
R 230 190 180 175 – – – – – – –

Data Representation and Modeling for Process Planning 245

www.manaraa.com

M Turning Tool Materials/cutting speed,mc15 (m-min-1)

Type Grade

320P 210 K 525P 530P 535P 816 S10 S20 836 HF7 HF10

PII Semi-roughing S 175 145 135 130 – – – – – – –
C,W 175 145 135 130 – – – – – – –
T 170 140 130 125 – – – – – – –
D 170 140 130 125 – – – – – – –
V 160 130 120 115 – – – – – – –
R 175 145 135 130 – – – – – – –

Roughing S 125 – 100 95 90 – – – – – –
C,W 125 – 100 95 90 – – – – – –
T 115 – 95 90 85 – – – – – –
D 115 – 95 90 85 – – – – – –
V 115 – 95 90 85 – – – – – –
R 125 – 100 95 90 – – – – – –

MI Fine turning S 230 – – 180 – 100 – – 80 60 45
C,W 230 – – 180 – 100 – – 80 60 45
T 210 – – 170 – 85 – – 80 60 45
D 210 – – 170 – 85 – – 70 55 40
V 200 – – 160 – 80 – – 70 55 40
R 230 – – 180 – 100 – – 80 60 45

Finishing S – 160 – 140 – 100 – – 80 – –
C,W – 160 – 140 – 100 – – 80 – –
T – 155 – 135 – 90 – – 75 – –
D – 150 – 135 – 90 – – 75 – –
V – 150 – 130 – 90 – – 70 – –
R – 160 – 140 – 100 – – 80 – –

Semi-roughing S – 120 110 105 – 85 – – 55 – –
C,W – 120 110 105 – 85 – – 55 – –
T – 115 100 95 – 80 – – 50 – –
D – 115 100 95 – 80 – – 50 – –
V – 105 95 90 – 75 – – 45 – –
R – 120 110 105 – 85 – – 55 – –

Roughing S – – – 80 – 50 – – 43 – –
C, W – – – 80 – 50 – – 43 – –
T – – – 75 – 45 – – 38 – –
D – – – 75 – 45 – – 38 – –
V – – – 75 – 45 – – 38 – –
R – – – 80 – 50 – – 43 – –

246 C. Chung and Q. Peng

www.manaraa.com

M Turning Tool Materials/cutting speed,mc15 (m-min-1)

Type Grade

320P 210 K 525P 530P 535P 816 S10 S20 836 HF7 HF10

MII Finishing S – – – – – 50 – – 45 40 35
C,W – – – – – 50 – – 45 40 35
T – – – – – 45 – – 40 35 30
D – – – – – 45 – – 40 35 30
V – – – – – 40 – – 35 30 25
R – – – – – 50 – – 45 40 35

Semi-
roughing

S – – – – – 35 – – 30 27 20
c,w – – – – – 35 – – 30 27 20
T – – – – – 30 – – 25 20 18
D – – – – – 30 – – 25 20 18
V – – – – – 25 – – 20 15 12
R – – – – – 35 – – 30 27 20

Roughing S – – – – – 30 – – 25 20 18
c,w – – – – – 30 – – 25 20 18
T – – – – – 25 – – 20 18 15
D – – – – – 25 – – 20 18 15
V – – – – – 25 – – 20 18 15
R – – – – – 30 – – 25 20 18

MIII Finishing S – 50 – – – 50 – – 35 45 30
c,w – 50 – – – 50 – – 35 45 30
T – 45 – – – 45 – – 35 40 20
D – 45 – – – 45 – – 35 40 20
V – 40 – – – 40 – – 30 35 20
R – 50 – – – 50 – – 35 45 30

Semi-
roughing

S – 35 – – – 35 – – 22 30 18
c,w – 35 – – – 35 – – 22 30 18
T – 30 – – – 30 – – 18 25 15
D – 30 – – – 30 – – 18 25 15
V – 25 – – – 25 – – 15 20 10
R – 35 – – – 35 – – 22 30 18

KI Fine turning S – 250 – 210 – 170 – – 145 140 125
c,w – 250 – 210 – 170 – – 145 140 125
T – 230 – 200 – 160 – – 135 135 120
D – 230 – 200 – 160 – – 135 135 120
V – 225 – 195 – 155 – – 130 130 115
R – 250 – 210 – 170 – – 145 140 125

Data Representation and Modeling for Process Planning 247

www.manaraa.com

M Turning Tool Materials/cutting speed,mc15 (m-min-1)

Type Grade

320P 210 K 525P 530P 535P 816 S10 S20 836 HF7 HF10

KI Finishing S – 220 – 185 – 145 – – 125 – –

C, W – 220 – 185 – 145 – – 125 – –

T – 210 – 175 – 135 – – 115 – –

D – 210 – 175 – 135 – – 115 – –

V – 200 – 160 – 125 – – 105 – –

R – 220 – 185 – 145 – – 125 – –

Semi-roughing S – 175 – 150 – 120 – – 105 – –

C,W – 175 – 150 – 120 – – 105 – –

T – 165 – 140 – 110 – – 95 – –

D – 165 – 140 – 110 – – 95 – –

V – 155 – 130 – 100 – – 85 – –

R – 175 – 150 – 120 – – 105 – –

Roughing S – 130 – 115 – 90 – – 80 – –

C,W – 130 – 115 – 90 – – 80 – –

T – 120 – 105 – 80 – – 70 – –

D – 120 – 105 – 80 – – 70 – –

R – 130 – 115 – 90 – – 80 – –

KII (Al) HB 100 Finishing S – – – – – 800 – – – 680 –

C,W – – – – – 800 – – – 680 –

T – – – – – 800 – – – 680 –

D – – – – – 750 – – – 600 –

V – – – – – 700 – – – 550 –

R – – – – – 800 – – – 680 –

Semi-roughing S – – – – – 600 – – – 480 –

C,W – – – – – 600 – – – 480 –

T – – – – – 600 – – – 480 –

D – – – – – 550 – – – 450 –

V – – – – – 500 – – – 400 –

R – – – – – 600 – – – 480 –

Roughing S – – – – – 400 – – – 350 –

C,W – – – – – 400 – – – 350 –

T – – – – – 400 – – – 350 –

D – – – – – 350 – – – 320 –

V – – – – – 300 – – – 280 –

R – – – – – 400 – – – 350 –

248 C. Chung and Q. Peng

www.manaraa.com

M Turning Tool Materials/cutting speed,mc15 (m-min-1)

Type Grade

320P 210 K 525P 530P 535P 816 S10 S20 836 HF7 HF10

KI Finishing S – 220 – 185 – 145 – – 125 – –

C, W – 220 – 185 – 145 – – 125 – –

T – 210 – 175 – 135 – – 115 – –

D – 210 – 175 – 135 – – 115 – –

V – 200 – 160 – 125 – – 105 – –

R – 220 – 185 – 145 – – 125 – –

Semi-roughing S – 175 – 150 – 120 – – 105 – –

C,W – 175 – 150 – 120 – – 105 – –

T – 165 – 140 – 110 – – 95 – –

D – 165 – 140 – 110 – – 95 – –

V – 155 – 130 – 100 – – 85 – –

R – 175 – 150 – 120 – – 105 – –

Roughing S – 130 – 115 – 90 – – 80 – –

C,W – 130 – 115 – 90 – – 80 – –

T – 120 – 105 – 80 – – 70 – –

D – 120 – 105 – 80 – – 70 – –

R – 130 – 115 – 90 – – 80 – –

KII (Al) HB 100 Finishing S – – – – – 800 – – – 680 –

C,W – – – – – 800 – – – 680 –

T – – – – – 800 – – – 680 –

D – – – – – 750 – – – 600 –

V – – – – – 700 – – – 550 –

R – – – – – 800 – – – 680 –

Semi-roughing S – – – – – 600 – – – 480 –

C,W – – – – – 600 – – – 480 –

T – – – – – 600 – – – 480 –

D – – – – – 550 – – – 450 –

V – – – – – 500 – – – 400 –

R – – – – – 600 – – – 480 –

Roughing S – – – – – 400 – – – 350 –

C,W – – – – – 400 – – – 350 –

T – – – – – 400 – – – 350 –

D – – – – – 350 – – – 320 –

V – – – – – 300 – – – 280 –

R – – – – – 400 – – – 350 –

Data Representation and Modeling for Process Planning 249

www.manaraa.com

A.8.4 Feed Rate and Cutting Depth in Turning

Material Feed rate, fr (mm-rev-1) Cutting depth, ap (mm)

Fine
turning

Finishing Semi-
roughing

Roughing Fine
turning

Finishing Semi-
roughing

Roughing

PI,II 0.05–0.1 0.1–0.2 0.2–0.4 0.4–0.8 0.2–1.0 0.8–2.0 1.5–4.0 4.0–10.0
MI 0.05–0.1 0.1–0.2 0.2–0.4 0.4–0.8 0.2–1.0 0.8–2.0 1.5–4.0 4.0–10.0
MII – 0.1–0.2 0.2–0.3 0.3–0.4 – 0.05–1.5 1.5–2.5 2.5–3.5
MII – 0.08–0.2 0.2–0.3 – – 0.8–1.50 1.5–2.5 –
KI 0.05–0.1 0.1–0.2 0.2–0.4 0.4–0.8 0.2–1.0 0.8–2.0 1.5–4.0 4.0–10.0
KII – 0.1–0.2 0.2–0.4 0.4–0.8 – 0.8–2.0 1.5–4.0 4.0–10.0

A.8.5 Durability Correction Factor (P, M, K Types)

Tmin KVT Tmin KVT

10 1.10 30 0.84
15 1.00 45 0.76
20 0.93 60 0.71

A.8.6 Work-Piece Hardness Correction Factor

A.8.6.1 P Type

HB KVHB HB KVHB

120 1.18 220 0.90
140 1.12 240 0.86
160 1.05 260 0.82
180 1.00 280 0.80
200 0.95 300 0.77

250 C. Chung and Q. Peng

www.manaraa.com

A.8.6.2 M Type

HB KVHB HB KVHB

\150 1.40 270–300 0.72
150–180 1.18 300–330 0.68
180–210 1.00 330–360 0.66
210–240 0.87 360–390 0.62
240–270 0.79

A.8.6.3 K Type

HB KVHB HB KVHB

Grey/nodular/malleable cast iron Heat resistant/special cast iron
160–200 1.26 200–300 0.50
200–240 1.00 300–360 0.40
240–280 0.80 360–450 0.30
280–330 0.60

A.8.7 Optimized Cutting Speed

vC ¼ vC15 � kVT � kVHB ð6Þ

where
vC Optimized cutting speed
vC15 Basic cutting speed
kVHB Hardness correction factor
kVT Durability correction factor

Data Representation and Modeling for Process Planning 251

www.manaraa.com

Appendix 9 Structure of Turning ToolOODB Java Class

252 C. Chung and Q. Peng

www.manaraa.com

Appendix 10 Calculation of Production Time
and Cost

A.10.1 Production Time Factor, Tp

Tp ¼ Tm þ Ti � Nt þ Tsu � Nsu ð7Þ

where
Tm Machining time L= fr � Nð Þð Þ
L Feature length
N Cutting speed in rpm
fr Maximum permissible feed in mm/rev
Ti Time to perform an index
Nt Number of tools to machine a part
Tsu Time to perform a set-up
Nsu Number of tools that must be added to the machine’s magazine

A.10.2 Production Cost Factor, Ct

Ct ¼ Ci � Nt þ Csu � Nsu þ
Xn

i¼1

CðiÞt ð8Þ

where
Ci Cost of performing an index for a tool, ðP� TiÞ
Csu Cost of performing a set-up for a tool, ðP� TsuÞ
Nsu Number of tools that must be added to the machine’s magazine

CðiÞt
Cost of a tool i

n Number of tools required to perform operations
P Pay rate

A.10.3 Rank of Tool Alternatives, Score

Score ¼ a� Ct þ b� Tp ð9Þ

Data Representation and Modeling for Process Planning 253

www.manaraa.com

where

Weighting condition a b

Normal condition 0.5 0.5
Cost weighted condition 1.0 0.0
Production time weighted condition 0.0 1.0

Appendix 11 Knowledge Tables and Equation
for Calculating the Maximum Power

A.11.1 Cutting Resistant and Feed Influence Exponent

Material group PS1[MPa] 1� Z

PI 1,760 0.76
PII 1,770 0.75
MI 2,530 0.75
MII Ni, Co alloys 2,895 0.76

Ti alloys 1,860 0.79
MIII 2,060 0.86
KI Grey cast iron 1,120 0.78

Malleable cast iron 1,190 0.77
Nodular cast iron 1,430 0.76

KII Cu alloys 710 0.76
Al alloys 508 0.78
Mg alloy 250 0.78

A.11.2 Coefficient, kkr

Approach angle kkr

90 1.00
80 1.015
70 1.02
60 1.04
55 1.06
50 1.08
45 1.10

254 C. Chung and Q. Peng

www.manaraa.com

A.11.3 Required Motor Power, P

P ¼ ap � f 1�Z
r � PS1 � kkr � vC

42; 000
kW½ � ð10Þ

where
vC Optimized cutting speed [m/min] [Refer to Eq. (6)]
fr Feed rate [mm/rev]
ap Cutting depth [mm]
1� Z Feed influence exponent for different materials machined
PS1 Specific cutting resistance (cutting force for feed f = 1 mm/rev at

kr = 90)
kkr Coefficient representing the approach angle kr influence

Data Representation and Modeling for Process Planning 255

www.manaraa.com

Appendix 12 Structure of MachineOODB Java Class

References

1. Ahmad N, Haque A, Hasin A (2001) Current trend in computer aided process planning. In:
Proceedings of the 7th annual paper meeting and 2nd international conference, pp 81–92

2. Cao Q, Dowlatshahi S (2005) The impact of alignment between virtual enterprise and
information technology on business performance in an agile manufacturing environment.
J Oper Manag 23:531–550

3. Chang T, Wysk RA, Wang H (1997) Computer-aided manufacturing, 2nd edn. Prentice Hall,
Englewood Cliffs

256 C. Chung and Q. Peng

www.manaraa.com

4. Chung C, Peng Q (2004) The selection of tools and machines on web-based manufacturing
environments. Int J Mach Tools Manuf 44:315–324

5. Huang SH (1998) Automated set-up planning for lathe machining. Int J Manuf Syst
17:196–208

6. Huang SH, Zhang H (1996) Tolerance analysis in set-up planning for rotational parts. Int J
Manuf Syst 15:340–350

7. Fernandes JK, Raja HV (2000) Incorporated tool selection system using object technology.
Int J Mach Tools Manuf 40:1547–1555

8. Kumar M, Rajotia S (2003) Integration of scheduling with computer aided process planning.
J Mat Proc Technol 138:297–300

9. Moon C, Seo Y (2005) Evolutionary algorithm for advanced process planning and scheduling
in a multi-plant. Comput Ind Eng 48:311–325

10. Moon C, Lee M, Seo Y, Lee YH (2002) Integrated machine tool selection and operation
sequencing with capacity and precedence constraints using genetic algorithm. Comput Ind
Eng 43:605–621

11. Peng Q, Hall RF, Lister MP (2000) Application and evaluation of VR-based CAPP system.
J Mat Proc Technol 107:153–159

12. Pramet (2001) Lathe turning tool handbook, Czech Republic
13. Pramet (2001) Lathe turning tool catalogue, Czech Republic
14. Singh N (1996) System approach to computer-integrated design and manufacturing. Wiley,

New York
15. Soromaz D, Khosknevis B (1997) Machine and tool constraint specification for integrated

process planning system. In: Proceedings of the 7th industrial engineering research
conference, pp 901–906

16. Usher MJ, Fernandes JK (1999) An object-oriented application of tool selection in dynamic
process planning. Int J Prod Res 37:2879–2894

17. Watson TR (1999) Data management, database and organization. Wiley, New York
18. Texas A&M University, (2012) Tolerances. Lecture notes (ENG105). http://edg.tamu.edu/

PEOPLE/schreuders/ENDG105/Lecture%206.2%20Tolerances.pdf

Data Representation and Modeling for Process Planning 257

http://edg.tamu.edu/PEOPLE/schreuders/ENDG105/Lecture%206.2%20Tolerances.pdf
http://edg.tamu.edu/PEOPLE/schreuders/ENDG105/Lecture%206.2%20Tolerances.pdf

www.manaraa.com

Computation of Offset Curves Using
a Distance Function: Addressing a Key
Challenge in Cutting Tool Path
Generation

C. K. Au and Y.-S. Ma

1 Introduction

Tool path generation plays an important role in manufacturing. Tool paths should
provide the cutter machine with the required geometry safely, efficiently, and
economically, and ensure that the specified surface finish is achieved. The tech-
niques used to generate tool paths are essential for the automation and optimiza-
tion of machining processes. With respect to computer-aided manufacturing
(CAM) software design and implementation, tool path generation is a major
function to support the efficient application of modern computer numerical control
(CNC) machine tools. Improvements in tool path generation methods may lead to
substantial gains in reduced machining time and cost [11]. Yet in the tool path
generation process, there exists a significant and nontrivial mathematical chal-
lenge: offset curve computation [4].

Curve representation and self-intersection are two major issues of offset curve
computation. These two issues are processed separately. An offset curve is a set of
points that lie a distance r perpendicular from a progenitor curve in R2. If a curve
is expressed parametrically as

CðtÞ ¼ xðtÞ; yðtÞð Þ ð1Þ

then its offset curve CrðtÞ is given by

CrðtÞ ¼ CðtÞ þ r � n ð2Þ

C. K. Au (&)
Faculty of Engineering, University of Waikato, Hamilton, New Zealand
e-mail: ckau@waikato.ac.nz

Y.-S. Ma
Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
e-mail: yongsheng.ma@ualberta.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_8, � Springer-Verlag London 2013

259

www.manaraa.com

where

n ¼ _yðtÞ;� _xðtÞð Þ
ffi
_xðtÞð Þ2þ _yðtÞð Þ2

q ð3Þ

n is the unit normal of the curve CðtÞ.
Note that in this definition, the offset distance r can be positive or negative,

yielding an offset curve on the either side of the progenitor curve. The parametric
curve CðtÞ is usually a polynomial or rational in most geometric modeling sys-
tems. Obviously, an offset curve cannot be represented by a polynomial or rational
curve due to the square root term in the denominator, unless the term

_xðtÞð Þ2þ _yðtÞð Þ2 is a perfect square of a polynomial. This special type of curve is
identified by Farouki [3] and is termed a Pythagorean Hodograph curve. Usually,
the offset curves are approximated by polynomial or rational functions while the
self-intersections are searched and trimmed afterward.

2 Research Background

Geometric modeling in engineering design and manufacturing applications fre-
quently requires curve-offsetting algorithms, such as tool path generation in CAM
software tools [4, 10, 11]. Various techniques have therefore been developed to
approximate an offset curve to a polynomial or rational curve so that it can be
represented in the geometric modeling system. Tiller and Hanson [19] and
Coquillart [2] have proposed various approaches to translate the control polygon of
a B-spline curve to obtain an offset curve. Klass [5] used a cubic Hermite curve to
approximate an offset curve, while Hoschek suggests using a least square method
to fit an offset curve. Piegl and Tiller [15] interpolated the offset sample points
with a B-spline curve. The excess knots are eliminated so that the offset curve has
an appropriate number of control points. Lee et al. [7–9] addressed the problem by
sweeping a circle along the progenitor curve, which yielded a convolution as the
offset curve. Zhao and Wang [21] generated the offset approximation using the
same approach with different parameterization. The accuracy, degree, and number
of control points of the offset curve are major concerns in curve representation.

Self-intersection of the offset curve occurs locally, with the offset distance
larger than the radius of curvature of the progenitor curve, and the phenomenon
can also be observed globally if the distance between two parts of the progenitor
curve is short. These self-intersections are referred to as topological changes [10]
between the progenitor curve and the offset curve, and are usually trimmed away
to yield a proper offset curve in most applications.

Lee et al. [7–9] approximated the progenitor curve with a set of line segments.
A plane sweep algorithm was employed to detect all self-intersections. The offset
curve was obtained with a trimming operation. Park and Choi [13] used expanded
pairwise interference detection tests to detect and remove the local self-

260 C. K. Au and Y.-S. Ma

www.manaraa.com

intersections. A raw offset curve was constructed, and the global self-intersections
were checked and eliminated by inclusion relationship. Seong et al. [17, 18]
defined a function among the offset distance, parameters of the progenitor curve,
and the offset curve. The critical points of the zero set of this function in the
parametric space were used to determine the self-intersections. A trimmed offset
curve was then created. Li and Martin [10] used a method based on medial axis
transformation to determine the self-intersections. Lai et al. [6] proposed a two-
way detecting algorithm to find the intersections so as to shorten the searching
time. The literature reflects a common practice of handling the topological changes
by detecting and trimming away the self-intersections. However, the task of
detecting these self-intersections is nontrivial [10]. The real application of tool
path generation requires advanced extension of curve offsetting algorithms. Some
of the functions required in pocket machining include covering and window-
crossing techniques, especially when the step-over is greater than the cutter radius.
Generation of cutter traversing routes has to consider cutter tooth entry/exit con-
ditions, the actual radial width of cut, and further cutting strategies for machining
other complex features [11].

This chapter presents an approach for computing the offset curves by using a
distance function. A distance function of a planar curve is defined to compute the
distances from any point on a plane to that curve. A progenitor curve is approx-
imated by a set of arcs. The distance function of the progenitor curve, which is
expressed as a set, is plotted based on the distance function of a point. Using the
set theory and this distance function, the set of points with the constant offset
distance from the approximated progenitor curve can be obtained. Hence, an offset
curve is generated by the Boolean set operations. The approach is implemented by
using solid modeling, which is an application of set theory. The advantage of this
approach is the simplicity of the computation algorithm, as no searching and
trimming routines are required to generate the offset curve and the offset curve can
be represented by a nonuniform rational B-spline (NURBS) curve.

3 Distance Function

The distance function of a geometric entity yields the Euclidean distance from any
point to that geometric entity. The complexity of the distance function is largely
dependent upon the geometric entity. This is a simple function for a point, but
numerical computation and approximation are usually required for a more com-
plex geometry such as a free-form NURBS curve or surface.

3.1 Distance Function of a Point

The distance function dist : R2 ! R of a point P defines the Euclidean distance from
a point Q 2 R2

� �
to point P 2 R2

� �
. Hence, 8Q 2 R2; 9d ¼ PQj j 2 R such that

Computation of Offset Curves Using a Distance Function 261

www.manaraa.com

d ¼ distðP;QÞ ð4Þ

Plotting the distance function of a point P over a two-dimensional plane R2

yields a cone with a half angle of p
4 and with the apex at the point P, as shown in

Fig. 1. For any point Q (2 R2), its distance d from point P is given by the distance
function dist.

The conical face of the distance function distðP;QÞ shown in Fig. 1 divides the
three-dimensional space R2 � R into two sub-spaces, K and its complement K 0:

K ¼ ðQ; dÞ : d� distðP;QÞ;P 2 R2; 8Q 2 R2
� �

ð5Þ

and

K 0 ¼ ðQ; dÞ : d\distðP;QÞ;P 2 R2; 8Q 2 R2
� �

ð6Þ

Hence, the distance function of a pointis written as

oK ¼ ðQ; dÞ : d ¼ distðP;QÞ;P 2 R2; 8Q 2 R2
� �

ð7Þ

3.2 Distance Function of Two Points

A distance function of two points, P1 and P2, yields the minimum Euclidean
distance from a point Q 2 R2

� �
to either point P1 or P2. Hence the distance

function dist : R2 ! R of two points P1 and P2 is defined as

distðP1jP2;QÞ ¼ min
P2 P1;P2f g

distðP;QÞ; 8Q 2 R2 ð8Þ

Fig. 1 The distance function
of a point P

262 C. K. Au and Y.-S. Ma

www.manaraa.com

Figure 2 shows the distance functions of points P1 and P2. The distances of
point Q from point P1 and P2 is given as distðP1;QÞ and distðP2;QÞ. As a result,

K1 ¼ ðQ; d1Þ : d1� distðP1;QÞ;P1 2 R2; 8Q 2 R2
� �

ð9Þ

K2 ¼ Q; d2ð Þ : d2� dist P2;Qð Þ;P2 2 R2; 8Q 2 R2
� �

ð10Þ

and

K1 [K2 ¼ ðQ; dÞ : d� min
P2 P1;P2f g

distðP;QÞ; 8Q 2 R2

� �
ð11Þ

The closure of the set K1 [K2 is expressed as

oðK1 [K2Þ ¼ ðQ; dÞ : d ¼ min
P2 P1;P2f g

distðP;QÞ;8Q 2 R2

� �
ð12Þ

which is the distance function of the points P1 and P2 as defined in Eq. (8).

3.3 Distance Function of a Planar Curve

A planar curve C(t) can be expressed as a set E of points:

E ¼ Pi : Pi 2 CðtÞð� R2Þ; 8t
� �

ð13Þ

Hence, the distance function dist : R2 ! R of a curve C(t) is defined as

distðCðtÞ;QÞ ¼ min
Pi2E

distðPi;QÞ; 8Q 2 R2 ð14Þ

If the geometry of the distance function of a point Pið2 EÞ is expressed as a oK i

such that

K i ¼ ðQ; diÞ : di� distðPi;QÞ;Pi 2 E; 8Q 2 R2
� �

ð15Þ

then the geometry of the distance function of a curve C(t) is

Fig. 2 The distance function
of two points

Computation of Offset Curves Using a Distance Function 263

www.manaraa.com

o [iKið Þ ¼ ðQ; dÞ : d ¼ min
Pi2E

distðPi;QÞ; 8Pi 2 E; 8Q 2 R2

� �
ð16Þ

The distance function o [Kið Þ of the curve C(t) (expressed as the set E) is shown
in Fig. 3.

4 Curve Offset

A plane parallel to the planar curve CðtÞ at a distance r is expressed as a set
pr 2 R2 � R
� �

pr ¼ Qi; dð Þ : d ¼ r; 8r 2 R; 8Qi 2 R2
� �

ð17Þ

Intersecting the sets o [iKið Þ and pr yields

o [iKið Þð Þ \ pr ¼ Qi; rð Þ 2 pr:r ¼ min
Pi2E

distðPi;QiÞ;Pi 2 E; 8Qi 2 R2

� �
ð18Þ

where \ is the Boolean intersection operator.
The minimum of distðPi;QiÞ for all Pi 2 E and 8Qi 2 R2 implies that the line

PiQi is perpendicular to the curve CðtÞ, and

Qi; rð Þ ¼ Pi þ r � ni; rð Þ ð19Þ

where ni is the unit normal of curve C(t) at point Pi�
Equation (17) can be rewritten as

Qi ¼ Pi þ r � ni ð20Þ

which is equivalent to projecting the set o [iKið Þð Þ \ pr onto R2, which yields

CrðtÞ ¼ CðtÞ þ r � nðtÞ ð21Þ

where CrðtÞ ¼ Qi : 8ðQi; rÞ 2 pr; 8if g
Equation (19) is an offset curve with offset distance r from the progenitor curve

CrðtÞ.

Fig. 3 The distance function
of a curve

264 C. K. Au and Y.-S. Ma

www.manaraa.com

In Fig. 4a, the set o [iKið Þð Þ \ pr is obtained by intersecting the sets o [Kið Þ and
pr. The resultant set is then projected onto the space R2, as shown in Fig. 4b.

Figure 5 shows an example of obtaining the offset curves based on set theory.
A distance function of a closed curve (of a horse shape) is plotted in Fig. 5a, which
shows the distance of the points inside the closed curve to the curve. A family of
inward offset curves is shown in Fig. 5b.

Fig. 4 Obtaining an offset
curve. (a) Interaction
operation to obtained
o [iKið Þð Þ \ pr . (b) Offset

curve

Computation of Offset Curves Using a Distance Function 265

www.manaraa.com

5 Algorithm and Implementation

A simple algorithm is proposed to generate the offset curves of a planar curve:

The algorithm is not easy to implement, as the sets E, K, S, and pr consist of an
infinite number of elements. Discretization of the sets causes accuracy issues.

A geometric approach is employed to implement the algorithm. The geometric
meanings of these sets are modelled using solid modeling representation. The solid
modeling representation of an object is based on the idea that a physical object
divides a three-dimensional space, R3, into two regions: interior and exterior,
separated by the object boundaries. Hence, the sets K and S are represented by two
solid models in the three-dimensional space. Several solid modeling operations can
be employed to manipulate the solids (hence the sets) to obtain the offset curves.

Fig. 5 Offset curve example.
(a) Distance function inside a
closed curve. (b) A family of
inward offset curve

266 C. K. Au and Y.-S. Ma

www.manaraa.com

The code fragment is an infinite union

operation. This is equivalent to sweeping a solid cone, K, along the curve C(t) as
the trajectory.

Sweeping a tool solid along a trajectory to produce another solid is a compli-
cated operation. The accuracy of the resultant solid from a sweeping operation
largely depends upon the geometry of the tool solid and on the trajectory. Topo-
logically, the resultant solid cannot have any self-intersection, since this violates
the 2-manifold data structure of a solid.

In this implementation, the tool solid is a cone that has standard analytical
geometry. As a result, the geometry of the trajectory, which is the progenitor curve
of the offset, is the key factor for the accuracy and validity of the resultant solid.
Basically, the varying radius of curvature of the progenitor affects both the
accuracy and the topology of the resultant solid. The cone must be kept in an
appropriate orientation to yield an accurate surface representation. The progenitor
curvature also determines if there is a self-intersection during the sweep operation.

In order to increase the modeling efficiency, bi-arc approximation [12, 16] is
employed to convert the progenitor curve into a set of arcs to facilitate the
implementation. The arcs are paired up so that each bi-arc matches two end points
and two end tangents of a curve segment. This method is appropriate in discret-
izing the curvature of a free-form curve.

Assume that C(t) is a NURBS curve which is approximated by a set of arcs
Ai 8ið Þ. Hence, CðtÞ ¼ [iAiðsÞ for 0� t� 1 and 0� s� 1. A sweep operation is
defined as

Si ¼ sweepðAiÞ ð22Þ

which yields a solid representation, Si, of the distance function of a curve Ai.
Representing the curve CðtÞ by a set of arcs Ai 8ið Þ simplifies the sweep

operation, since both tool solid (the cone) and trajectory (the arc) are analytical
geometries. Furthermore, this application of bi-arc approbation of a curve gener-
ates a standard solid representation of a distance function, since sweeping a cone
along an arc yields the same solid geometry as revolving a cone about the axis
through the center of the arc.

Figure 6a shows the sweeping of a cone along an arc, Ai, which is equivalent to
rotating a cone about the axis through the center of the arc. The height of the cone
is chosen to be larger than the offset distance. One of the choices of the height can
be the maximum of the largest radii of all the arcs and the offset distance. Fig-
ure 6b shows the resultant solid geometry Si obtained by sweeping a cone along
one of the arcs, Ai. The two planar faces of the solid Si will join the faces of the
solids Si�1 (which is generated by sweeping a cone along arc Ai�1 with radius ri�1)
and Siþ1 (which is generated by sweeping a cone along arc Aiþ1 with radius riþ1).

Computation of Offset Curves Using a Distance Function 267

www.manaraa.com

The other code fragment

create set pr

Qr ¼ S \ pr

is to intersect the solid S with a plane, pr, which is at a parallel distance r from the
planar curve C(t). Since the solid S and the plane pr are of different dimensions,
this operation is replaced by sectioning the solid S by the plane pr. The edges of
the sectioned solid are extracted and projected onto the plane of the curve C(t).
A section operation and project operation are defined as

Qr ¼ sectionðS; rÞ ð23Þ

Fig. 6 Sweeping a cone
along an arc. (a) Rotation as
sweeping. (b) Resultant solid
geometry

268 C. K. Au and Y.-S. Ma

www.manaraa.com

which splits a solid S with a plane parallel at distance r to the plane of the curve
C(t) and

Qo ¼ projectðQrÞ ð24Þ

which projects the edge of the solid geometry Qr onto the plane of curve C(t).
The algorithm is rewritten as

This algorithm is implemented with ParaSolid kernel, which provides the
geometric modeling operation routines of sweep, section, and project.

Figure 7 shows the processes of obtaining the offset curves. A curve is
approximated by two arcs, A1 and A2. The solid geometry S1 and S2, representing
the distance functions for arc A1 and A2, are shown in Fig. 7a, b. Figure 7c, d
depict their positions and the solid geometry of the resultant distance function
S1 [S2, respectively. Sectioning the solid geometry of the resultant distance
function yields the offset curves illustrated in Fig. 7e. The family of offset curves
is projected onto the plane of the progenitor curve as shown in Fig. 7f.

Figures 8 and 9 show two examples of curve offsetting. Figure 8a is an open
curve and its offset curves are shown in Fig. 8b. Figure 8c, d depict the distance
function and its solid geometry with sections. In comparison, Fig. 9a, b show a
closed curve with an island inside, and its inward offset curves. The distance
function and its solid geometry with sections are shown in Fig. 9c, d, respectively.
For visualization purposes, only the distance function inside the loop of the closed
curve is shown.

Computation of Offset Curves Using a Distance Function 269

www.manaraa.com

6 Discussion

6.1 Offset Curve Representation

Most of the existing approaches to offset curve representation compute the exact
offset curve points and then approximate the curves by interpolation using poly-
nomials or rational curves. Furthermore, these approaches are iterative processes.
The approximation error range is calculated and compared with the required tol-
erance. If the tolerance is outside the error range, the progenitor curve is subdi-
vided and the process is repeated until the tolerance falls within the error range.

The proposed approach approximates the progenitor curve by a set of arcs and
then obtains the exact offset curves. Hence, the offset curve is composed of a set of
arcs with G1 continuity. Since each arc can be represented by a rational Bezier
curve, the offset curve can be represented by a nonuniform B-spline curve. The
excess knots are removed to reduce the number of control points [14].

Fig. 7 Generating the offset curve by distance function (a) Distance function for arc A1.
(b) Distance function for arc A2. (c) Distance function of both arc. (d)Resultant distance
function. (e) Sectioning the distance function. (f) Projecting the family family of offset curves

270 C. K. Au and Y.-S. Ma

www.manaraa.com

6.2 Self-Intersection

The changes of topology between the progenitor curve and the offset curve are
mainly due to the local and global self-intersections of offset curves. The common
approach to dealing with these self-intersections is to detect these changes and trim
them away. However, self-intersection detections are nontrivial and increase the
complexity of the algorithm. Using set theory and solid modeling, the proposed
implementation eliminates the detection and trimming process in offset curve
computation.

Plotting the distance function of a curve is a major step in computing the offset
curve. It is based on the fact that a planar curve consists of an infinite number of
points, which can be expressed as E ¼ [ifPig (8i). The distance function of a
point, Pi, is given as oKi in Eq. (6); however, the distance function of a curve is
o [iKið Þ instead of [i oKið Þ. This set operation arrangement will automatically
eliminate the self-intersection of the offset curve and results in a simple offset
curve computation algorithm. It can be seen that all the local and global self-
intersections of the offset curves shown in Figs. 5b, 6f, 7b, and 8b are eliminated

Fig. 8 The offset of an open curve . (a) An open curve. (b) The offset curves. (c) The distance
function. (d) Solid geometry with sections

Computation of Offset Curves Using a Distance Function 271

www.manaraa.com

even though no self-intersection detection and trimming routines are found in the
algorithm.

6.3 Error Control

Most of the offset curve representations using polynomial or rational functions are
approximated by interpolating the sample points from the offset curve Equation
(1). An error function is defined to measure the deviations [1, 7–9]. The errors
between the approximated offset curve and the exact offset curve are computed. If
the error is larger than the required tolerance, the offset curve will be re-inter-
polated with more sample points to reduce the error. This is a timely iterative
process, as errors are not directly controlled. Furthermore, the error function for
deviation measurement is dependent upon the offset curve computation method
and must be correctly defined; otherwise, the approximation errors may be either
over- or under-estimated. Alternatively, an error bound [20] is employed to esti-
mate the errors rather than computing the actual deviation.

Fig. 9 The offset of a closed curve. (a) A closed curve with an island. (b) The inward offset
curves. (c) The distance function. (d) Solid geometry with sections

272 C. K. Au and Y.-S. Ma

www.manaraa.com

The method proposed here uses a different approach. Instead of approximating
the offset curve, it approximates the progenitor curve; the exact offset of the
approximated progenitor curve is then computed. This approach has direct control
over the errors between the progenitor curve and its bi-arc approximation [12, 16].
The implementation of this proposed algorithm employs the robust algorithm
provided by Piegl and Tiller [16]. The examples presented here were all created
using NURBS curves, and were approximated by a set of bi-arcs with a tolerance
of 10-6 mm. The curve offset computation performance is very fast and the cal-
culation can be done almost in real time with the required tolerance.

7 Summary

This chapter presented a method to compute offset curves. The method can be
summarized as follows:

1. The progenitor curve is reformatted by the bi-arc approximation.
2. A distance function yielding the minimum distance from a point to the pro-

genitor curve approximation is plotted by using set theory and a union Boolean
operation.

3. The offset curves are obtained by an intersection Boolean operation.

The major advantage of this approach is its coverage of both self-intersection
and curve representation issues. The algorithm is simple, requiring no search and
trimming operation. The Boolean set operations (union and intersection) will
automatically handle the topological changes. The offset curves are expressed as a
set of arcs with first-order continuity. These arcs can be reformulated to a NURBS
representation with the excess knots removed.

Additionally, an approach to compute the distance between a point and a curve,
as well as to carry out solid modeling, was introduced by applying the set theory
and Boolean operation. This distance computation method will be useful for
medial axis transformation and Voronoi diagram computation.

References

1. Ahn YJ, Kim YS, Shin Y (2004) Approximation of circular arcs and offset curves by Bezier
curves of high degree. J Comput Appl Math 167:405–416

2. Coquillart S (1987) Computing offset of B-splines curves. Comput-Aid Des 19:305–309
3. Farouki RT, Sakkalis T (1990) Pythagorean hodographs. IBM J Res Dev 34:736–752
4. Held M (1991) On the computational geometry of pocket machining. Springer, Berlin
5. Klass R (1988) An offset spline approximation for plane cubic splines. Comput-Aid Des

20:33–40
6. Lai YL, Wu JSS, Hung JP, Chen JH (2006) A simple method for invalid loops removal of

planar offset curves. Int J Adv Manuf Tech 27:1153–1162

Computation of Offset Curves Using a Distance Function 273

www.manaraa.com

7. Lee IK, Kim MS, Elber G (1996) Planar curve offset based on circle approximation. Comput-
Aid Des 28:617–630

8. Lee IK, Kim MS, Elber G (1997) New approximation methods of planar offset and
convolution curves. In: Strasser W, Klein R, Rau R (eds) Geometric modelling: theory and
practice. Springer, Berlin

9. Lee IK, Kim MS, Elber G (1998) Polynomial approximation of Minkowski sum boundary
curves. Graph Model Image Process 60:136–165

10. Li W, Martin RR (2011) Global topological changes of offset domains. In: Eighth
international symposium on voronoi diagram in science and engineering. Qingdao

11. Ma YS (1994) The generation of tool paths in 21/2-D milling. PhD thesis, University of
Manchester, Manchester

12. Park H (2004) Error-bounded biarc approximation of planar curves. Comput-Aid Des
36:1241–1251

13. Park SC, Choi BK (2001) Uncut free pocketing tool-paths generation using pair-wise
offset algorithm. Comput-Aid Des 33:739–746

14. Piegl LA, Tiller W (1997) The NURBS book. Springer, Berlin
15. Piegl LA, Tiller W (1999) Computing offsets of NURBS curves and surfaces. Comput-Aid

Des 31:147–156
16. Piegl LA, Tiller W (2002) Biarc approximation of NURBS curves. Comput-Aid Des

34:807–814
17. Seong JK, Elber G, Kim MS (2006) Trimming local and global self-intersections in offset

curves/surfaces using distance maps. Comput-Aid Des 38:183–193
18. Seong JK, Johnson DE, Elber G, Cohen E (2010) Critical point analysis using domain lifting

for fast geometry queries. Comput-Aid Des 42:613–624
19. Tiller W, Hanson EG (1984) Offsets of two-dimensional profiles. IEEE Comput Graph Appl

4:36–46
20. Zhao HY, Wang GJ (2007) Error analysis of reparameterization based approaches for curve

offsetting. Comput-Aid Des 39:142–148
21. Zhao HY, Wang GJ (2009) Offset approximation based on reparameterization the path of a

moving point along the base circle. Appl Math: J Chin Univ 24:431–442

274 C. K. Au and Y.-S. Ma

www.manaraa.com

Feature Transformation
from Configuration of Open-Loop
Mechanisms into Linkages with a Case
Study

Abiy Wubneh, C. K. Au and Y.-S. Ma

1 Introduction

This chapter proposes a method for feature synthesis of mechanisms and
manipulators from user specifications based on a hybrid approach employing both
neural network and optimization techniques. The mechanism design modeling
problem with the lack of solution convergence observed in optimization is
addressed by using a neural network method to generate reliable initial solutions.
This chapter also discusses a module by which the validation of prescribed pre-
cision configuration points is evaluated. An excavator arm mechanism is used as a
case study to test and validate the method. The necessary training data for the
neural network is generated primarily through the use of forward kinematics
equations, while the proposed method is analyzed using dimensional data collected
from existing products.

Existing products are frequently modeled as a type of assembly features [9].
They can be redesigned and customized to meet specific operational needs and
increase efficiency. Such customizable and yet conceptually proven products are
commonly used to perform atypical tasks under space constraints, such as spe-
cialized manipulators. These products can be developed as a cluster of instances of
a generic product because of their inherent common engineering principles. The
generic product model are modeled in the form of assembly features. In most
cases, the design objective can be achieved by adopting a different set of con-
figuration parameter values based on a generic product model of the existing
design features using the same design procedures developed during the initial
design. Such well-defined assembly features, whose parameters can be assigned

A. Wubneh � Y.-S. Ma (&)
Department of Mechanical Engineering, University of Alberta,
Edmonton, AB T6G 2G8, Canada
e-mail: yongsheng.ma@ualberta.ca

C. K. Au
Engineering, University of Waikato, Waikato, New Zealand

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_9, � Springer-Verlag London 2013

275

www.manaraa.com

with different values, enable the product configuring mechanism to achieve
increasing versatility and to address customization needs. However, specifying an
effective and valid design feature data set for those existing feature models is
difficult given the expected complicated and interdependent constraints [8].

For certain machinery equipment, such as excavators, the final spatial access
envelope diagrams of the overall assemblies, which are referred to here as product
specification features, are the basis of customer evaluation of the dimensional
specifications. This kind of specification feature can be appreciated as a subtype of
the assembly design feature as defined by Ma et al. [9]. Unlike those well-defined
modular mechanical products, such as the mold bases used in the plastic molding
industry [9], the conceptual design of manipulator products usually starts with a set
of target specification features, i.e., the envelope diagrams or prescribed paths and
motions identified by end users that need to be achieved by the overall mechanism.

There is another type of feature that has to be defined in this chapter: the design
configuration feature, which is a product-level assembly feature [9] that represents
the design intent with characteristic dimensions, geometry, patterns, and other
associative relations to interfacing components. In the context of typical manipu-
lator mechanism design, the configuration features are realized by materializing the
component design features [10] involved. The process of design realization involves
a feature dimensional synthesis phase in which engineers analyze relations among
component design features to compose a workable and satisfactory product con-
figuration that is governed by the aforementioned configuration feature. Of course,
the final product design has to be completed by focusing on determining individual
component feature dimensions and their related constraints, as well as material
application patterns, in order to meet the configuration feature requirements after the
mechanism is assembled. This chapter covers the design transformation process
from the specification features to the configuration features. The remaining further
design processes will be covered in the next chapter.

With reference to the context of manipulator design, a single pose (position and
orientation) of the end effectors of the manipulator, or a valid instance of the
specification feature, is defined by customers with their application demands; to
translate the specification features into a set of configuration design features, the
transformation process needs to use those known values of the manipulator’s
linkage dimensions together with the joint parameters to go through trials of
inverse kinematic fitting. Typically, the specified poses (or instances of specifi-
cation features) can only be verified and eventually confirmed by using kinematics
procedures with the assumed (or known) linkage dimensions in the manipulator, or
in other words, the related component design features.

However, the challenge arises when the customer requires and defines a set of
expected configuration poses: what is the method to transform such input into those
materialized linkage configuration features? In such a case, instead of solving a
forward kinematics problem (direct configuration feature development) from the
known components, the nature of the (which is common manipulator design)
problems require solving kinematics problems in reverse based on a set of given
specification feature instances. In other words, with the predefined specification

276 A. Wubneh et al.

www.manaraa.com

feature instances defined in the form of access envelopes, the configuration defini-
tion of the mechanism needs to be inversely calculated.

Multiple configuration solutions to such inverse kinematics problems usually
exist. Obviously, with a set of required feature behavior instances (poses) to be
targeted in the form of an access envelope space or, even more critically, an access
path, the calculation for the mechanism dimensions becomes very complicated due
to the combined constraints of kinematics and the existence of multiple solutions.
Finding these solutions is already a challenge, but evaluating or validating them is
even more difficult. For a single pose problem, the existing methods are man-
ageable with reasonable effort. However, a multi-pose problem, which requires
that the calculated linkage dimensions and joint variables fully satisfy a set of
configurations or path parameters, makes the inverse kinematics approach difficult
to implement.

Thus far most researchers have tried to solve the inverse kinematics and opti-
mization problems by using a computational workspace searching method, but the
optimization results are not reliable due to the fact that there are multiple solutions.
To obtain the necessary convergence toward the expected range of a solution,
researchers need initial suggestions as the input of the searching procedures. This
initial solution requirement creates considerable challenges when trying to auto-
mate the conceptual design process and implement it using computer programs.
There are dense correlations among the configuration feature parameters; arbitrary
values cannot be assumed in their places when solving the system equations.
Failure to use an appropriate starting parameter vector may produce mathemati-
cally accurate but physically impossible solutions.

The two remaining tasks are formulating a set of parametric geometric rela-
tionships for the specification feature of a manipulator, which has to be associated
with typical linkage configuration feature parameters, and searching a workable
solution, which needs an optimization technique.

This chapter proposes a method by which feature dimensional synthesis for
manipulator mechanisms is performed based on the end user’s specification
parameter input. The implementation of this method requires a vector of initial
suggestions of linkage configuration parameters that has to be close to the expected
solution. A smart neutral network procedure is used to generate the feasible initial
suggestions of the linkage parameters. A case study of an excavator arm mecha-
nism is carried out and the results are promising. The algorithm has been imple-
mented in MATLAB, a numerical analysis software tool produced by MathWorks.

2 Background of Relevant Research

Optimizing mechanism dimensions is a well-known design problem in the field of
robotics and machinery, and a broadly studied research area. However, due to the
multiple members of a mechanism and the dependencies among them that are
constrained by kinematics, the problem is complicated. For example, Wu et al.

Feature Transformation from Configuration of Open-Loop Mechanisms 277

www.manaraa.com

[13] formulated the kinematic constraints of closed chain mechanism as a mapping
from Cartesian space to a higher dimensional projective space called image space
by representing planar displacements with planar quaternions. The researchers
pointed out that the use of this method enables one to reduce the problem of
dimensional synthesis by determining algebraic parameters that define the image
spaces. Computational simplification was achieved by transforming kinematic
equations into geometric constraints. Dealing with the geometric parameters of the
constraint manifold instead of the mechanism parameters provides ease and
flexibility due to the decoupled nature of the relationships.

Optimization techniques are usually applied to solve the mechanism linkage
dimensions). For example, a procedure of synthesizing the linkage dimensions of a
four-bar spherical linkage mechanism was proposed by Alizade and Kilit [1] The
procedure used a polynomial approximation to transform 5 nonlinear equations
into 15 linear equations and solve five design parameters. The objective of this
study was to determine the dimensions of a spherical four-bar linkage mechanism
by linearizing a set of nonlinear equations. The requirement for the mechanism
was that it will be able to trace five precision points in space. The minimum
deviation area (MDA) was proposed as a constraint criterion to select the most
appropriate solution. The result of this investigation was tested by plotting the path
of the mechanism against the prescribed precision points using AutoCAD 2000.

Jensen and Hansen [6] have suggested a method by which dimensional syn-
thesis for both planar and spatial mechanisms are accomplished by taking the
problem of non-assembly into consideration. The method makes use of a gradient-
based optimization algorithm. Analytic calculation of sensitivities is performed by
direct differentiation. The problem was mathematically formulated as a standard
optimization problem with inequality to take the non-assembly nature of the
problem into account. The Newton–Raphson method, due to its rapid convergence
property, is used in the minimization of the kinematic constraints. Saddle’s point
and steepest descent methods were used to verify the direction of convergence and
stability of the minimization method, respectively.

Kinematic synthesis of redundant serial manipulators has become the focus of
research for Singla et al. [11]. They used an augmented Lagrangian optimization
technique to determine optimum dimensions for a redundant serial manipulator.
The algorithm was used for its robustness in identifying feasible solution ranges
effectively. The formulation of the problem was based on the minimization of the
positional error subject to the constraints of avoiding manipulator collisions with
either external obstacles or its own links.

The workspace boundary definition can be more complicated. Laribi et al. [7]
discussed an optimization technique used for determining the linkage dimen-
sions)of a DELTA parallel robot for a prescribed workspace. The technique uses a
genetic algorithm to minimize an objective function developed by writing
expressions for the end effector location, based on a concept called the power of
the point. The dimensions of the robots were calculated by minimizing a volume
created by three intersecting surfaces that contain the prescribed cubic workspace.
A penalty function screened out infeasible and select feasible solutions from the

278 A. Wubneh et al.

www.manaraa.com

available solution domain. Zhao et al. [15] used a similar approach, but the pre-
scribed workspace was represented by a cylinder contained inside the minimum
workspace volume and enclosed by the manipulator movement boundary surfaces.
An optimization-based dimensional synthesis procedure was suggested to deter-
mine dimensional parameters for the design of a 2-UPS-PU parallel manipulator.
The researchers used a cylindrical coordinate system when formulating the kine-
matic relationships, including the forward and inverse kinematics of the manip-
ulator together with the Jacobian matrix for force and velocity analysis.

However, it has been identified that the multiple numbers of possible solutions
is the primary disadvantage of analytical solutions methods. Gao et al. [4] reported
that for their six degree of freedom (DOF) parallel manipulator, the traditional
optimization techniques in the areas of dimensional synthesis lack the badly
needed convergence property in their solutions when it is used for handling a
larger number of geometric variables and complex objective functions. Non-tra-
ditional optimization methods need to be explored in order to address the problems
of convergence uncertainties and limitations, on a maximum number of precision
point problems solved using optimization and analytical techniques.

Gao et al. [4] also used generic algorithms and artificial neural networks
(ANNs) as tools to deal with the optimization of the manipulator’s stiffness and
dexterity based on kinematic analysis procedures. Levenberg–Marquardt and
standard back propagation algorithms were used in the neural network to
approximate stiffness and dexterity analytical solutions. Because of the large
numbers of variables included in the analysis, they have used two different
approaches for the optimizations: Single Objective Optimizations (SOOs) and
Multiple Objective Optimizations (MOOs) multiple objective optimization
(MOO). With the first approach, the two objectives, stiffness and dexterity, were
investigated separately; with the second approach, they were investigated together
to understand their combined effect. Both approaches proved to be compatible.

It is worth pointing out, as Vasiliu and Yannou [12] did in their work, that ‘‘the
absence of continuity between different morphologies prohibited and discouraged
the use of interpolation techniques’’ in such a problem. Vasiliu and Yannou also
proposed the use of ANNs. The ANN designed to be used for the synthesis
application takes in the prescribed path and motion as an input and gives out the
linkage parameters as an output. Erkaya and Uzmay [2] aimed to overcome
problems arising from joint clearances in a four-bar mechanism. They used neural
networks to characterize the clearances and the mechanism, and genetic algorithms
to optimize them with the path and transmission angle errors used as part of the
objective function. The clearances were represented by high stiffness and
weightless links to make them suitable to be studied under rigid motion consid-
erations but without affecting the overall inertial property of the mechanism. ANN
procedures were also used by Hasan et al. [5] to study the relationship between the
joint variables and the position and orientation of the end effector of a six DOF
robot. The study was motivated by the fact that the use of ANN does not require an
explicit knowledge of the physics behind the mechanism. The network was trained
by the use of real-time data collected by sensors mounted on the robot. Designed

Feature Transformation from Configuration of Open-Loop Mechanisms 279

www.manaraa.com

with an input layer of six neurons for three Cartesian location coordinates and
three linear velocity components, the network was used to establish a mapping
pattern between the input and output. The project mainly focused on finding the
kinematic Jacobian solutions.

The advantage of using ANN is that it does not require any details of the
mathematical and engineering knowledge involved [5]; it is thus suited to a wide
range of similar applications. It was suggested that as long as there is sufficient
data for training purposes, the ANN can be used to predict the Jacobian kinematics
of other configurations without the need to learn and understand the explicit robot
philosophies. Modifications and changes in existing robot structures can always be
addressed by training the ANN with a new set of data reflecting the new
modifications.

The problems and shortcoming associated with using ANN are also discussed in
Hasan et al. [5]. The first challenge discussed is the difficulty of selecting the
appropriate network architecture, activation functions, and bias weights. The other
problem discussed is the difficulty and impracticality of collecting large amounts
of data for the purpose of training the neural network.

As an alternative to using the ANN approach, some researchers are more
interested in simulation and spatial configuration performance analysis of
manipulators. Their work is motivated by the need to understand the manipulators’
performance under certain environmental constraints. Frimpong and Li [3], for
example, modeled and simulated a hydraulic shovel to investigate its kinematics
and spatial configurations when the shovel is deployed in a constrained mining
environment. Denavit-Hartenberg homogeneous coordinate transformation tech-
niques were used to represent the relative orientations and configurations of
adjacent links as well as the overall assembly. Forward kinematics of the machine
was investigated as a five-linkage manipulator. After formulating the kinematics
equations the manipulator was modeled in 3D and was simulated using the MSC
ADAMS simulation software for selected time steps.

Therefore, as suggested by Vasiliu and Yannou [12], the requirement of a large
number of data for training ANN can be addressed by simulation of the paths for a
number of given sets of linkage parameters. The ANN can be trained using the
simulated data in reverse, i.e., that for the given sets of mechanism parameters, the
information of the access paths were determined. The other important point dis-
cussed in Vasiliu and Yannou’s work is that neural networks perform well only
within the data range they were trained with. Normalization of parameters during
the utilization phase of the network is needed to bring the input values to the
known range of the training set.

The constraints imposed for manufacturing the products usually dictates the
capacities and efficiencies of the machineries. The general design and modification
requirements can sometimes be achieved by merely redesigning an existing
mechanism out of a different set of existing product sales materials.

Remote operability of hydraulic excavators, initiated due to operational safety
and hazard issues, has recently become the focus of some researchers. The task of
controlling the motion of excavator arm mechanisms has been attempted by

280 A. Wubneh et al.

www.manaraa.com

various remote control mechanisms. The method developed by Yoon and Manu-
rung [14] is based on mapping the angular joint displacements of the human arm
joints to that of the excavator arm joints. Their work is motivated by the need to
include intuitivism into the control system.

3 The Proposed Hybrid Approach

3.1 Overall Concept Description

Most optimization techniques usually require a very good initial solution to be
defined in order to produce sound solutions. One of the objectives of this chapter is
to introduce a feature-based system by which a set of initial solutions that are
reasonably close to the actual solution can be generated. Optimization techniques,
when applied to the problems of dimensional synthesis of prescribed precision
points, commonly encounter the difficulty of giving reasonable and practical
results. There are two reasons for this: first is the proximity of the goal solution to
the predefined initial solution; second is the compatibility or feasibility of the
prescribed precision points. This is to say that prescription of unrealistic and
ambitious specifications most likely produce, if the search converges to a solution
at all, mathematically sound but physically inapplicable solutions.

The hybrid method proposed in this paper can be summarized by the flowchart
as shown in Fig. 1. It is the objective of this chapter to introduce a new method in
which a well-trained artificial neural network (ANN) tool is used to generate a set
of high-quality initial solution suggestions for mechanism parameters based on
user specifications, while optimization techniques are used to finally synthesize the
necessary dimensions. The hybrid method attempts to jointly employ optimization
and neural network procedures to synthesize the linkage design mechanisms’
feature dimensions and further map them to the real manipulators. User specifi-
cations are also qualified with the checking of their priorities and ranges accept-
able as the prescribed input values. The individual modules and procedures are
explained in detail in the following subsection.

3.2 Synthesis and Validation Procedure

The proposed method can be divided into the following stages: (1) ANN training;
(2) input parameter validation; (3) system testing; (4) initial solution generation;
(5) mechanism parameter synthesis; (6) result verification; and (7) random system
check. To make full use of the neural network’s advantage, its inner transformation
matrices must first be trained to reflect the intricate nature of input and output
relations.

Feature Transformation from Configuration of Open-Loop Mechanisms 281

www.manaraa.com

3.2.1 Artificial Neural Network Training

Essentially, the purpose of training the ANN is to build a database that will be used
to generate the feasible suggestions of the initial mechanism parameters according
to new configuration specifications. The first step is to collect the training data.
Ideally, such training data can be obtained from existing similar product infor-
mation catalogues, usually in the form of product families, because the relevant
data from that channel is proven workable with both input and output sets. As
shown in Fig. 1, the proposed method makes use of such data as indicated by the
top job block. Unfortunately, although these real product data sets are quite useful
for training the ANN, the number of available data sets is never sufficient. To find
a solution for the shortage of training data, forward mechanism simulation can be
utilized to create as many input/output data sets as required [5]. Note that the
generation of such simulation data is necessary because the available data is
usually insufficient to serve the training purpose and the extra effort of collecting
additional real product data is prohibitively costly.

In the case of the data generation process, the specification feature parameters
which define the total workspace of the mechanism assembly will be generated
from the given set of linkage configuration feature dimensions using forward
kinematic equations. This is a mapping process in which the mechanism design
feature parameters (linkage dimensions) are mapped to the specification feature
terms, i.e., the envelope configuration parameters of the workspace or the working
path in the case of a planar mechanism.

When training the ANN, both the existing real product feature data sets and the
generated data sets will be used in reverse: the existing specification feature
parameters are used as the input data for the training while the mechanism con-
figuration feature parameters are used as the target output data. Note that most of
the training data sets can be generated from the ‘‘artificial’’ forward mechanism
behavior algorithm as used by Laribi et al. [7], which had provided a satisfactory
outcome. In addition, real product data sets are collected from the market, and play
a more important role in incorporating the industrial optimization factors into the
ANN module. Those overall industrial design factors are embedded implicitly in
real products on top of engineering mathematical solutions.

Since the ANN is expected to be effectively used only for those parameters
lying within the ranges of its training data [7], to make the training data more
generically useful, unification of the input vector as well as the output vector
during the training cycles should be assured. Similarly, during the application of
the trained neural network, the input and output for the new dimensional param-
eters have to be scaled or normalized to make sure they lie within the training
ranges.

282 A. Wubneh et al.

www.manaraa.com

YFinal Solution,

Generation of Lin-
kage Design Feature

Parameters

Forward Kinematics
Generation of Work-
space Configuration

Specification Feature
Parameter Prioritiz-
ing and Validation

New
Specification

Feature
Parameters
Based on

User Inputs

Selection of Validated
Input Specification
Feature Parameters

Neural
Network
Training

Initial
Solution,

for the
Configura-
tion Feature

Input Normaliza-
tion Workout
Scale Factor

Output Scale
Application

System
Test Sa-
tisfacto-

?

Inverse Kine-
matics and

Optimization

Neural
Network Use

N

System Ready

System
Setup

Data collected from
existing products

(Links/Configuration)

Training data

Real –time data

System test data

Fig. 1 Dimensional synthesis procedure

Feature Transformation from Configuration of Open-Loop Mechanisms 283

www.manaraa.com

3.2.2 Input Specification Feature Parameter Validation

In addition to the training of the ANN, to search for a feasible mechanism
parameter solution from a given set of configuration parameters it is necessary that
the configuration parameter values be compatible with each other and their
practical coexistence be feasible. If this condition is not met, the results of the
analysis may be inapplicable. Figure 2 shows the procedure adopted to validate
input configuration parameters. It is worth noting that the term validation is used
here only to describe the applicability of a prescribed parameter set to a particular
machine or manipulator configuration. The validation is performed by determining
whether the configuration’s given multiple input parameters, after being scaled or
normalized, lie within the relative ranges established by the collected and gener-
ated data. The ranges derived from collected data are based on the results of
statistical analysis of all the real product models available. The ranges derived
from ANN-generated data are to be discussed in Sect. 4.3, which addresses the
implementation algorithm.

Select the First
Prioritized Confi-

guration

Specify Feature Parameter Values

Scale Input Vector

Check Parameter
Ranges

Record Vector Values Real Product
Data

Select Next
Priority Confi-

guration

Select Value
from Range

Compatible
Configuration

Values

Fig. 2 Configuration prioritizing and selection

284 A. Wubneh et al.

www.manaraa.com

3.2.3 System Testing

To validate the overall procedure, real product specification feature data sets are to
be used again for testing purposes, as shown by the step ‘‘Selection of Validated
Input specification Feature Parameters’’ in Fig. 1. To test the system’s reliability,
which is different from the ANN training process, the real product configuration
parameters are fed into a trained ANN module to generate initial suggestions of the
linkage configuration feature dimensions. Then, together with envelope specifi-
cation feature parameters, the initial linkage configuration feature dimensions are
used as the seeding vector to search for the goal vector of the targeted mechanism
configuration dimensions. Then the output goal vector is compared with the real
product mechanism dimension vectors. Theoretically, the system output deviations
should be well within the specified tolerance of the system’s accuracy require-
ments. Note that the real product data sets are only a relatively small portion of the
overall ANN training data sets. If the system does not meet the accuracy expec-
tations, then more training data sets are required from both channels (as discussed
previously).

3.3 Application of the Smart Design Feature Transformation

3.3.1 Initial Inverse Kinematic Solution Generation for Application

After the ANN has been successfully configured, it should be ready for applica-
tion. At the beginning of the application design stage, the validated specification
feature parameters are passed to the ANN module to generate initial design
solutions. The initial solutions will then be used by the appropriate optimization
procedure to refine and derive the goal solutions.

3.3.2 Mechanism Configuration Feature Dimension Synthesis

The dimension synthesis, which is specific to the nature of the mechanism in
question, is carried out through optimization algorithms. The case that follows in
Sect. 4 is a study of an excavator arm linkage system, and includes details of the
algorithms. Ultimately, the resulting mechanism configuration feature parameter
solutions in this research must be scaled back to the original ratio before being
further processed.

Feature Transformation from Configuration of Open-Loop Mechanisms 285

www.manaraa.com

3.4 Results Validation

The optimization results are to be validated before they are adopted in the design
and displayed in an appropriate CAD context. This straightforward procedure is to
apply forward mechanism simulation and check the envelope space or path details
against the specifications. If the results are not satisfactory, a troubleshooting
procedure must be carried out. As discussed in the following case study, the
reported research results have so far been satisfactory with a limited number of
tests; the troubleshooting method was therefore not further explored.

3.5 Random System Validation Check

To measure and validate the performance of the system, randomly selected con-
figuration parameter data sets from the existing products’ database can be selected
and the corresponding mechanism configuration feature parameters generated
using the proposed method. The results can be cross-checked against the actual
dimensions and the efficiency of the method will be determined.

4 Case Study

4.1 Excavator Case Representation

In the conceptual process of designing an excavator, translating the access spec-
ification parameters (prescribed points or an envelope path) into linear dimensions
of the arm mechanism represents the first stage. To do this, the boom, stick, and
buckets of the planar mechanism are represented by linear linkages, and other
elements, such as hydraulic cylinders and bucket transition four-bar linkages, are
left out of consideration at this stage (see Fig. 3). These three links, connected in
boom-stick-bucket sequence, are positioned and oriented in different poses such
that their final configurations pass through the input specifications. Figures 3a and
3b show the traditional catalogue specification dimensions S1; S2; . . .S5ð Þ, listed in
Table 1, and the representation of the mechanism by linear elements ðl1; l2; l3; bÞ,
respectively.

Hence, the design process involves determining a set of individual linkage
dimensions) for the excavator arm mechanism (listed in Table 2) so that when they
are connected to each other and conform to the overall mechanism, they will
satisfy the working-range requirements.

Unlike forward kinematic problems in which the location and other properties
of the end effector are to be calculated based on different joint variables and
linkage dimensional inputs, this problem involves determining the joint variables

286 A. Wubneh et al.

www.manaraa.com

(a)

(b)

Fig. 3 An example excavator arm configuration. a Typical commercial work-range specifica-
tions. b Linear arm elements

Table 1 Hydraulic
excavator workspace
configuration parameters

S1 Maximum reach at ground level
S2 Maximum digging depth
S3 Maximum cutting height
S4 Maximum loading height
S5 Minimum loading height
S6 Maximum depth cut at level bottom
S7 Maximum vertical wall digging depth

Feature Transformation from Configuration of Open-Loop Mechanisms 287

www.manaraa.com

and linkage dimensions) for a given set of end effector configurations (bucket in
this case). In forward kinematics or direct configuration analysis, the task is
usually to determine the final configuration of the mechanism based on a given set
of joint variables and linkage dimensions); this is a relatively simple and
straightforward process, since the analysis usually leads to a unique solution. The
inverse process in question, on the other hand, is relatively complex due to the
availability of multiple solutions.

4.2 Data Generation for Neural Network Training

The main purpose of this task is to generate configuration and linkage parameter
data sets to be used for training the proposed ANN. The ANN will be used in later
stages to narrow down and select a physically viable set of linkage parameters to
be used as initial solutions. This is entirely a forward kinematic procedure in which
each final vector of configuration parameters, S; is determined from a given set of
linkage dimensions) and joint variables, L.

Here S ¼ ðS1; S2; . . .; S5Þ; L ¼ ðl1; l2; l3; bÞ:
The following subsections describe the mathematical model used for working

out the envelope path configuration parameters ðS1; S2; . . .; S5Þ from the mecha-
nism linkage parameters, ðl1; l2; l3; bÞ:

4.2.1 Maximum Reach-Out at Ground Level (S1)

The position of the bucket tip is calculated using forward kinematic methods. The
individual rotational and linear transformation matrices are formulated using the
Denavit-Hartenberg convention.

By applying the Law of Cosine to Fig. 4, the following mathematical rela-
tionship is formulated:

c2 ¼ ðl2 þ l3Þ2 þ l2
1 � 2l1 l2 þ l3ð Þ cosð180� bÞ ð1Þ

c2 ¼ ðl2 þ l3Þ2 þ l2
1 þ 2l1 l2 þ l3ð Þ cos b ð2Þ

c ¼
ffi
ðl2 þ l3Þ2 þ l2

1 þ 2l1 l2 þ l3ð Þ cos b
q

ð3Þ

Table 2 Mechanism linkage
dimensions

l1 Hinge to hinge boom length
l2 Stick length
l3 Hinge to tip bucket length
b Boom deflection angle

288 A. Wubneh et al.

www.manaraa.com

sin b0 ¼ V

c
¼ V

ffi
ðl2 þ l3Þ2 þ l21 þ 2l1 l2 þ l3ð Þ cos b

q ð4Þ

b0 ¼ sin�1 V

c

� �
¼ sin�1 V

ffi
ðl2 þ l3Þ2 þ l21 þ 2l1 l2 þ l3ð Þ cos b

q

0

B@

1

CA ð5Þ

ðS1 � HÞ2 ¼ ðl2 þ l3Þ2 þ l2
1 þ 2l1 l2 þ l3ð Þ cos b� V2 ð6Þ

ðl2 þ l3Þ2 þ l2
1 þ 2l1 l2 þ l3ð Þ cos b� V2 � ðS1 � HÞ2 ¼ 0 ð7Þ

The sequence of frame of reference translation from the origin to a frame
located at the tip of the bucket is represented by the homogeneous transformation

A ¼ Tx0HTy0VRz0�bRz0�b0 ð8Þ

where
Tx0H Linear displacement in the positive x direction with H value
Ty0V Linear displacement in the positive y direction with V value
Rz0�b0 Rotation about the z axis by angular value of �b0

Tx0c Linear displacement in the positive x direction by a value of c:

The rotation sequences of Eq. 8, when represented by the corresponding
matrices, take the following form:

AS1 ¼
1 0 0 H
0 1 0 0
0
0

0
0

1
0

0
1

2

64

3

75

1 0 0 0
0 1 0 V
0
0

0
0

1
0

0
1

2

64

3

75

cos �b0ð Þ � sin �b0ð Þ 0 0
sin �b0ð Þ cos �b0ð Þ 0 0

0
0

0
0

1
0

0
1

2

664

3

775

1 0 0 c
0 1 0 0
0
0

0
0

1
0

0
1

2

64

3

75

ð9Þ

The resulting homogenous transformation matrix is then given by

Fig. 4 Maximum out-reach at ground level

Feature Transformation from Configuration of Open-Loop Mechanisms 289

www.manaraa.com

As1 ¼
cosb0 sin b0 0 H þ c cos b0

� sin b0 cos b0 0 V � c sin b0

0 0 1 0
0 0 0 1

2

664

3

775 ð10Þ

The value of the maximum out-reach at ground level is then extracted from the
above homogenous transformation matrix. The expression in cell ð1; 4Þ is the value
of the x coordinate of the bucket tip from the origin of the fixed reference frame,
which in this case is the same as the value of the maximum reach-out at ground
level, S1.

S1 ¼ AS1ð1; 4Þj j ¼ jH þ c cos b0j ð11Þ

4.2.2 Maximum Digging Depth (S2)

The maximum digging depth requires the definition of angle a2, measured from the
vertical to indicate the lower limit of the boom angular displacement around the
base hinge. For a given value of this limiting angle, the maximum digging depth is
expressed mathematically using the Denavit-Hartenberg convention:

Again, by using Law of Cosine,

l2
1 ¼ b2 þ b2 � 2b2 cosð180� 2bÞ ð12Þ

where b is the length of each side of the boom. For the purpose of simplification,
they are assumed to be of equal length in this development.

l1 ¼ 2b cos b ð13Þ

Referring to Fig. 5,

S2 ¼ l1 cos a2 þ l2 þ l3 � V ð14Þ

S2 ¼ l1 cos a2 þ l2 þ l3 � V ð15Þ

l1 cos a2 þ l2 þ l3 � V � S2 ¼ 0 ð16Þ

The homogeneous transformation sequence in this case is given by

AS2 ¼ Tx0HTy0V Rz0 a2ð ÞTy0�l1Rz0�bTy0�b ð17Þ

290 A. Wubneh et al.

www.manaraa.com

AS2 ¼

1 0 0 H

0 1 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775

1 0 0 0

0 1 0 V

0 0 1 0

0 0 0 1

2

6664

3

7775

cos a2ð Þ � sin a2ð Þ 0 0

sin a2ð Þ cos a2ð Þ 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775

1 0 0 0

0 1 0 �l1

0 0 1 0

0 0 0 1

2

6664

3

7775

� � �

cos �bð Þ � sin bð Þ 0 0

sin �bð Þ cos �bð Þ 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775

1 0 0 0

0 1 0 �b

0 0 1 0

0 0 0 1

2

6664

3

7775

ð18Þ

The resulting homogeneous transformation matrix takes the form of

Fig. 5 Maximum digging
depth

Feature Transformation from Configuration of Open-Loop Mechanisms 291

www.manaraa.com

AS2 ¼

cosða2 � bÞ � sinða2 � bÞ 0 H þ l1 sinða2Þ þ b sinða2 � bÞ
sinða2 � bÞ cosða2 � bÞ 0 V � l1 cosða2Þ � b cosða2 � bÞ

0 0 1 0
0 0 0 1

2

664

3

775

ð19Þ

The cell in this matrix representing the maximum digging depth is the y dis-
placement in cell ð2; 1Þ.

S2 ¼ AS2 2; 1ð Þj j ¼ jV � l1 cosða2Þ � b cosða2 � bÞj ð20Þ

4.2.3 Maximum Cutting Height (S3)

For a given value of the upper angular limit of the boom rotation, a1, the procedure
for the maximum cutting height expression formulation follows a procedure
similar to the maximum digging depth calculation.

Referring to Fig. 6, the following relationship is developed for the maximum
cutting height configuration:

H2 ¼ l1 cos h ð21Þ

where h in this case is given by

h ¼ ða1 � bÞ ð22Þ

H2 ¼ l1 cosða1 � bÞ ð23Þ

H3 ¼ l2 cos h� bð Þ ð24Þ

H3 ¼ l2 cos a1 � 2bð Þ ð25Þ

H4 ¼ l3 cos h� bþ abuð Þ ð26Þ

S3 ¼ V þ H2 þ H3 þ H4 ð27Þ

S3 ¼ V þ l1 cosða1 � bÞ þ l2 cos a1 � 2bð Þ þ l3 cos a1 � 2bþ abuð Þ ð28Þ

l1 cos a1 � bð Þ þ l2 cos a1 � 2bð Þ þ l3 cos a1 � 2bþ abuð Þ þ V � S3 ¼ 0 ð29Þ

The homogenous coordinate transformation sequence for this configuration is
given by

AS3 ¼ Tx0HTy0V Rz0ða1�bÞTy0l1Rz0�b; Ty0b ð30Þ

292 A. Wubneh et al.

www.manaraa.com

AS3 ¼

1 0 0 H

0 1 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775

1 0 0 0

0 1 0 V

0 0 1 0

0 0 0 1

2

6664

3

7775

cos a1 � bð Þ � sin a1 � bð Þ 0 0

sin a1 � bð Þ cos a1 � bð Þ 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775

1 0 0 0

0 1 0 l1

0 0 1 0

0 0 0 1

2

6664

3

7775

cos �bð Þ � sin �bð Þ 0 0

sin �bð Þ cos �bð Þ 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775

1 0 0 0

0 1 0 b

0 0 1 0

0 0 0 1

2

6664

3

7775

ð31Þ

Fig. 6 Maximum cutting height

Feature Transformation from Configuration of Open-Loop Mechanisms 293

www.manaraa.com

AS3 ¼

cos a1 � 2bð Þ � sin a1 � 2bð Þ 0 H � b sin a1 � 2bð Þ � l1 sinða1 � bÞ
sin a1 � 2bð Þ cos a1 � 2bð Þ 0 V þ b cos 2b� a1ð Þ þ l1 cosða1 � bÞ

0 0 1 0
0 0 0 1

2

664

3

775

ð32Þ

The y displacement component of this matrix represents the maximum cutting
height.

S3 ¼ jAS3ð2; 4Þj ¼ jV þ b cos 2b� a1ð Þ þ l1 cosða1 � bÞj ð33Þ

4.2.4 Maximum Loading Height (S4)

The vertical position assumed by l3 in Fig. 7 is represented by slightly modifying
the expression developed for maximum cutting height and ignoring the orientation
angle of the last frame of reference, as follows:

S4 ¼ V þ H2 þ H3 � l3 ð34Þ

l1 cosða1 � bÞ þ l2 cos a1 � 2bð Þ � l3 þ V � S4 ¼ 0 ð35Þ

The expression for maximum cutting height is modified with minor changes to
make it fit this configuration. The last linear coordinate translation in this case is
limited to l2 instead of b ¼ l2 þ l3ð Þ: The bucket length l3 is further deducted from
the y displacement component of the matrix.

The final result is given by the following matrix:

AS3 ¼

cos a1 � 2bð Þ � sin a1 � 2bð Þ 0 H � l2 sin a1 � 2bð Þ � l1 sin a1 � bð Þ
sin a1 � 2bð Þ cos a1 � 2bð Þ 0 V � l3þ l2 cos 2b� a1ð Þ þ l1 cos a1 � bð Þ

0 0 1 0
0 0 0 1

2

664

3

775

ð36Þ

S4 ¼ jAS3ð2; 4Þj ¼ jV � l3 þ l2 cos 2b� a1ð Þ þ l1 cosða1 � bÞj ð37Þ

4.2.5 Minimum Loading Height (S5)

Following a similar procedure gives an expression for the homogeneous trans-
formation matrix of the minimum cutting height configuration, as represented by
Fig. 8.

S5 ¼ V þ H2 � l2 � l3 ð38Þ

S5 ¼ V þ l1 cos a2 � bð Þ � l2 � l3 ð39Þ

294 A. Wubneh et al.

www.manaraa.com

V þ l1 cos a1 � bð Þ � l2 � l3 � S5 ¼ 0 ð40Þ

AS3 ¼

cos a1 � 2bð Þ � sin a1 � 2bð Þ 0 H � l1 sinða1 � bÞ
sin a1 � 2bð Þ cos a1 � 2bð Þ 0 V þ l1 cosða1 � bÞ � l2� l3

0 0 1 0
0 0 0 1

2

664

3

775

ð41Þ

S5 ¼ jAS3ð2; 4Þj ¼ jV þ l1 cosða1 � bÞ � l2� l3j ð42Þ

Fig. 7 Maximum loading height

Feature Transformation from Configuration of Open-Loop Mechanisms 295

www.manaraa.com

4.3 Generation of Training Data

The required training data is generated by mapping the configuration parameter for
a set of mechanism dimension parameters. MATLAB is used to implement this
task.

l1
l2
l3
b

2

64

3

75!

S1

S2

S3
S4

S5

2

6664

3

7775
ð43Þ

Fig. 8 Minimum loading
height

296 A. Wubneh et al.

www.manaraa.com

4.4 Neural Network Training

Since the ANN is needed to fulfill the purpose of preliminary inverse kinematic
analysis, the output data generated from the forward simulation, S, will be used as
the input data for its training, while the linkage parameters vector L, is the target
data. Since the values of the configuration parameters depend also on the overall
dimensions of the vehicle on which they are mounted, constant values for the xx
and yy coordinates of the base hinge, H and V, are used in the analysis.

Accordingly, as shown in Fig. 9, a two-layer feed forward ANN is designed to
map seven input configuration parameters to four target parameters. The ANN has
one hidden layer with twenty neurons and one output layer with four neurons. The
network is trained using the Levenberg–Marquardt back propagation algorithm.
Sigmoid activation functions are used for the first layer and linear one-to-one
activation functions for the output layer. The neural network is implemented using
the neural network toolbox of the MATLAB programming language.

Given any one of the configuration parameters, S1; S2; . . .; S5; the developed
method identifies possible ranges of the other four configuration parameters based
on the data generated in the previous section. Since the data is generated by
simulating specific ranges of the linkage dimensions), this method scales input
configuration parameters to make sure they lie within the available data range.
Selected output ranges by this method are scaled back to the original before being
displayed for the user.

Fig. 9 Architecture of the
neural network

Feature Transformation from Configuration of Open-Loop Mechanisms 297

www.manaraa.com

The method implemented using a MATLAB program called f_Parame-
ter_Sorter provides an option for the user to select a configuration parameter with
which to begin and the sequence of upcoming selections. This option allows the
flexibility to prioritize the operational configurations as needed. Once the first item
is entered for the first choice of the configuration parameter, four different com-
patible configuration parameter ranges will be suggested for the others.

This process will be repeated on the remaining four parameters by selecting
which configuration parameter to prioritize and picking its value from the range
provided. The result of this second operation modifies the ranges of compatible
values of the remaining three parameters. This process is repeated until all con-
figuration parameters are assigned valid values. Figure 10 shows the convergence
performance of the ANN training cycles, while Fig. 11 shows the standard ANN
algorithm regression chart.

4.5 Solving for Linkage Configuration Feature Parameters

Equations 11, 20, 33, 37, and 42 relate the specification values S1; S2; S3; S4; and S5

to the geometric dimensions of the excavator arm mechanism l1; l2; l3; and b.
Given the values of the other constants, these nonlinear equations can be solved
using optimization techniques to determine the optimum linear and angular
dimensions of the arm mechanism.

Since buckets are available as standard parts, the calculation of this algorithm
focuses on determining the lengths of the boom and the stick together with the
boom deflection angle, i.e., l1; l2; and b. The selection of the bucket is made based
on the initial solution suggested by the ANN. To determine the above three
unknown variables, a combination of three of the above nonlinear equations is

Fig. 10 Performance of the
neural network

298 A. Wubneh et al.

www.manaraa.com

solved using a MATLAB function, fsolve(), which employs the power of the trust-
region-reflective algorithm

F X; Sð Þ ¼ 0 ð44Þ

where X and S are vectors of unknown mechanism dimension variables and input
configuration specification parameters.

X ¼
l1
l2
b

2

4

3

5 S ¼

S1
S2

S3

S4
S5

2

6664

3

7775
ð45Þ

Considering the maximum reach-out at ground level, maximum cutting height,
and maximum loading height, the vector of equations will be formulated as
follows:

l21 þ ðl2 þ l3Þ2 þ 2l1 l2 þ l3ð Þ cos b� V2 � ðS1 � HÞ2
l1 cosða2 � bÞ þ l2 cos a2 � 2bð Þ þ l3 cos h� bþ abuð Þ þ V � S3

l1 cosða2 � bÞ þ l2 cos a2 � 2bð Þ � l3 þ V � S4

2

4

3

5 ¼ 0 ð46Þ

The trust-region-reflective algorithm used to find the solution requires an initial
solution to be defined as a starting point. The accuracy of the output for this
particular problem greatly depends on the closeness of the initial solution to the
actual solution. This is the stage where the suggested initial solution by the neural

Fig. 11 Regression result

Feature Transformation from Configuration of Open-Loop Mechanisms 299

www.manaraa.com

network is used. It is also expected that at this stage the viability of the initial input
parameters, S1; S2; � � � ; S5; is confirmed by the use of valid ranges developed
according to the procedure discussed previously.

4.6 Case Study Analysis Results and Discussion

In all, ten existing excavator product configuration data sets were collected; their
contents are given in Table 3. A total of 1,296 forward simulation data sets were
generated and they were used to train the ANN module developed with MATLAB.
To test the system performance, the ten product configuration envelope path
parameters were then fed into the ANN, and the output of the ANN, i.e., the initial
suggestions for the downstream optimization module, was presented in Table 4
(left half). For the sake of comparison, the solutions generated after the optimi-
zation process are also listed in Table 4 (right half).

Clearly, the ANN module has served the purpose of providing useful initial
suggestions that enabled the optimization module to find feasible solutions for the
given mechanism. Furthermore, Table 5 shows the comparison results between the
solutions and the original real product data obtained for the ten existing config-
urations. The average errors for linear dimensions are pretty close, i.e., within
10 %, but the angular b shows a bigger difference from the original dimension:
about 24 %. The deviations of these errors are relatively small. Therefore, we can
conclude that the proposed method is feasible and the results show a good
agreement with the testing input data set. The method can be further improved by
fine-tuning the optimization algorithms and the boundary conditions as well as by
using more realistic product data sets for ANN training.

Table 3 System testing data collected from the existing products (units: cm/degree)

Configuration Mechanism dimensions Vehicle

Product S1 S2 S3 S4 S5 11 l2 l3 b H V

1 359 183 344 226 107 174.1 88.2 51.9 24.5 63 75
2 413 252 384 271 109 205.9 102 61.1 25 68 86
3 412 260 359 246 111 201.2 99.4 67.9 28 74 93
4 435 228 422 283 106 203.3 105.2 64.9 30 78 90
5 409 248 385 267 125 201.3 99.5 61.5 25 66 84
6 372 208 371 257 110 171.4 89.1 58.2 24 77 82
7 352 196 331 235 92 159 86.3 49.6 22 77 71
8 345 203 338 238 99 165.1 88.4 49 20 64 73
9 332 184 335 238 104 163.4 83.8 47.5 24 55 71
10 415 254 368 272 110 204.9 102 63.1 25.76 68 81

300 A. Wubneh et al.

www.manaraa.com

5 Conclusion

In this chapter, a hybrid feature transformation method from specification feature
instances to mechanism configuration features was presented. The method uses
ANN and optimization tools to solve feature-based dimension synthesis problems.
The ANN, in order to reflect the mapping relations between accessing the envelope
path and the linkage lengths in an excavator arm case study, needs to be trained
before becoming usable. A mix of real product data sets from those existing
product families and the generated data sets from forward kinematic simulation
calculation methods are used for ANN training purposes. The forward data gen-
eration method is used to solve the problem of a shortage in real product data, and
to produce enough ‘‘artificial’’ training data. The results of the analysis show a
satisfactory estimation of the initial solutions based on the ANN model. For a set
of existing product configurations, after testing the system on the whole cycle and
searching for the final solutions with the optimization module, it can be concluded
that the method is feasible and the results are promising, although more research
analysis and evaluation are required. While this research used an excavator arm
mechanism for the case study, the proposed method is not a product-dependent
approach. Potentially, this hybrid method can be used for many other mechanism
design processes as well.

Table 4 The initial and final solutions generated from the system

ANN initial solution (m) Optimization final solution (m)

Product l1 l2 l3 b l1 l2 l3 b

1 1.747 0.688 0.634 17.28 2.09 0.93 0.634 34.97
2 1.9697 0.9599 0.6556 19.4858 2.0022 0.9547 0.6556 30.0233
3 2.0453 0.8433 0.7019 26.524 2.0282 0.8581 0.7019 35.2464
4 1.8104 0.7914 0.783 10.7072 1.6981 0.8382 0.783 18.6694
5 1.7703 0.7381 0.6662 15.6772 2.0433 0.8323 0.6662 30.1607
6 1.6806 0.805 0.6103 13.2475 1.9883 0.9117 0.6103 25.8929
7 1.5389 0.8259 0.5279 15.2362 2.0148 0.9988 0.5279 30.014
8 1.6275 0.9462 0.5138 12.3882 1.97 0.9848 0.5138 32.8084
9 1.6105 0.909 0.4687 14.3593 2.1144 0.9756 0.4687 32.3521
10 1.9589 1.0773 0.6004 24.8409 1.879 0.926 0.6004 31.9021

Table 5 Accuracy statistics of the system results

Dimensions Average error (%) Unbiased standard deviation Root mean square error (RMSE)

l1 8.627 0.1569 0.1489
l2 1.4641 0.1356 0.1286
l3 7.1778 0.085 0.0806
b 23.858 0.2652 0.2516

Feature Transformation from Configuration of Open-Loop Mechanisms 301

www.manaraa.com

Acknowledgments The authors would like to thank the Natural Sciences and Engineering
Research Council of Canada (NSERC) for its Discovery grant support (No. 355454-09) and the
University of Alberta for its NSERC GRF (G121140079) grant.

References

1. Alizade RI, Kilit O (2005) Analytical synthesis of function generating spherical four-bar
mechanism for the five precision points. Mech Mach Theor 40:863–878

2. Erkaya S, Uzmay I (2008) A neural-genetic (NN–GA) approach for optimizing mechanisms
having joints with clearance. Multibody Syst Dyn 20:69–83

3. Frimpong S, Li Y (2005) Virtual prototype simulation of hydraulic shovel kinematics for
spatial characterization in surface mining operations. Int J Surf Min, Reclam Environ
19:238–250

4. Gao Z, Zhang D, Ge Y (2010) Design optimization of a spatial six degree-of-freedom parallel
manipulator based on artificial intelligence approaches. Robot Comput Integr Manuf
26:180–189

5. Hasan AT, Hamouda AMS, Ismail N (2009) Trajectory tracking for a serial robot
manipulator passing through singular configurations based on the adaptive kinematics
Jacobian method, vol 223. In: Proceedings of the institution of mechanical engineers, Part I:
journal of systems and control engineering, pp 393–415

6. Jensen OF, Hansen JM (2006) Dimensional synthesis of spatial mechanisms and the problem
of non-assembly. Multibody Syst Dyn 15:107–133

7. Laribi MA, Romdhane L, Zeghloul S (2007) Analysis and dimensional synthesis of the
DELTA robot for a prescribed workspace. Mech Mach Theor 42:859–870

8. Li YL, Zhao W, Ma YS (2011) A strategy for resolving evolutionary performance analysis
coupling at the early stages of complex engineering design. J Eng Des 22:603–626

9. Ma YS, Britton GA, Tor SB, Jin LY (2007) Associative assembly design features: concept,
implementation and application. Int J Adv Manuf Tech 32:434–444

10. Shah JJ, Mantyla M (1995) Parametric and feature-based CAD/CAM concepts, techniques
and applications. Wiley-Interscience, New York

11. Singla E, Tripathi S, Rakesh V (2010) Dimensional synthesis of kinematically redundant
serial manipulators for cluttered environments. Robotics Auton Syst 58:585–595

12. Vasiliu A, Yannou B (2001) Dimensional synthesis of planar mechanisms using neural
networks: application to path generator linkages. Mech Mach Theor 36:299–310

13. Wu J, Purwar A, Ge QJ (2010) Interactive dimensional synthesis and motion design of planar
6R single-loop closed chains via constraint manifold modification. J Mech Robot 2:031012

14. Yoon J, Manurung A (2010) Development of an intuitive user interface for a hydraulic
backhoe. Automat Constr 19:779–790

15. Zhao Y, Tang Y, Zhao Y (2008) Dimensional synthesis and analysis of the 2-UPS-PU
parallel manipulator. 1st international conference on intelligent robotics and applications,
ICIRA 2008

302 A. Wubneh et al.

www.manaraa.com

Feature-Based Mechanism Design

Abiy Wubneh and Y.-S. Ma

1 Introduction

This chapter presents a feature-based concept design method for variational
mechanisms. The proposed method integrates dimensional synthesis, mechanical
design, and CAD generation with advanced feature technology with minimal
designer intervention. Extended feature definitions are used in this research to
create a smooth data flow connection between different engineering tools and
applications. An excavator arm mechanism is used as a case study to demonstrate
the proposed design method. The design of the given mechanism is carried out
based on its digging mode configurations as introduced in the previous chapter.

The design process of multi-component products which are subject to frequent
changes and modification is very complex due to the large amount of data
involved. Dimensions and parameters defined by customers at the initial stages of
the design process are used by latter design stages during a product lifecycle. This
situation is further complicated when different parts of the product are designed by
people located in various geographic locations. Changes and modifications evoked
by one department are not reflected on components being developed by other
departments without considerable time and resources. Constraint definition and
management is just one area affected by the chosen data management system
adopted in the design process.

Traditional CAD systems lack effective means for the implementation of
effective knowledge-driven design procedures, especially for embedding engi-
neering semantic patterns and the subsequent evolvement in CAD-supported
design processes. This has forced researchers to look into possible ways of
enriching information in the traditional CAD models.

A. Wubneh � Y.-S. Ma (&)
Department of Mechanical Engineering, University of Alberta,
Edmonton, AB T6G 2G8, Canada
e-mail: yongsheng.ma@ualberta.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_10, � Springer-Verlag London 2013

303

www.manaraa.com

Features were introduced as a means to address the engineering semantic
pattern modeling need. Features are basically object data structures containing a
range of information and service functions required to fully describe and manip-
ulate the shape and related semantic aspects of the engineering pattern. They have
been used to deal with the most commonly used data elements including model
geometries, materials, manufacturing methods, tolerances, and machining proce-
dures. Recently, more complicated and sophisticated features have been defined to
cover previously overlooked but critical aspects of the design process.

This research is motivated by the advancement of feature definitions and their
potential applications in the areas of intelligent design automation and integration.
The intention is to extend the use of feature-based modeling concepts to include
mechanism design intents and constraints.

2 Statement of Problem

Traditional design systems, including CAD and CAE tools, have very limited
capability in terms of storing rich-information with data format that can be
accessed by different phases of the product development cycles. This limitation
directly affects the choices of the design methodologies and the necessary data
communication mechanisms. The information required by different stages of
product design process has to be transferred in a effective manner to achieve
maximum automation and efficiency. Attention is now shifted to developing a
method by which the pertinent design information will be stored in a consistent
and reusable data structure that is integrated with the product’s CAD models.
Thus, the previously fragmented design data files and those corresponding product
CAD models have to be combined into a single product data model. In fact,
modern product models are no longer merely a collection of CAD geometric
entities. Customizable and advanced semantic definitions called features have long
been used to integrate different engineering data structures with strong associa-
tivity to engineering thinking patterns and semantics.

The conceptual design process of variational mechanism, which is the focus of
this research, is known for its various fragmented modules running on some sets of
common data. Design process and knowledge development is iterative in nature.
Each design cycle generates a set of data or a data model to be used in the creation
of the next phase model of the product being designed. For example, since the
product will have different inertia properties after its 3D embodiment, the next
design cycle will have to consider the new properties (both physical and geo-
metric) before commencing the next cycle. Effective automation of this process
requires the systematic creation of CAD models in a very consistent manner.

Associative relationships between different features of a mechanism design
model have to be systematically constrained to ensure the final generated model
has comprehensive physical and engineering descriptions. A design procedure

304 A. Wubneh and Y.-S. Ma

www.manaraa.com

equipped with methods which can satisfy these requirements will earn itself an
important place in advancing the industrial application.

3 Objectives

The objective of this research is to propose a feature-based conceptual design
automation scheme specific to variational mechanism products. This scheme will
attempt to use the capabilities of features in accommodating for both geometrical
and non-geometrical types of data into a CAD system. It aims to utilize features to
bridge the current automation gap in the conceptual design cycle and to further
investigate features’ applicability in terms of embedding conceptual design rules
for complex part shapes and structures development.

The applicability of the proposed methods will be demonstrated using the
design procedure of an excavator mechanism as a case study. This chapter
addresses feature-based product design aspects of product configuration, linkage
optimization, and their programming implementation.

4 Scope of Study

This research is proposing a conceptual product design automation method with
the integration of feature-based CAD model generation via APIs C++ and
MATLAB programming tools. The case study mentioned includes the basic
generation and optimization design calculations of an excavator arm mechanism.
Only the digging operational conditions are considered for the design purpose. The
design has been carried out mainly taking the strength requirements (working
stresses) into consideration in a numerical approach (design for strength). Other
design aspects, such as dynamic behavior and finite element analysis (FEA), are
beyond the scope of this work due to the resource constraints.

5 Literature Review

This chapter reviews research works and publications of other scholars which are
relevant to the objective of this research. The overall organization of this section is
targeted to cover the following major topics:

• Design automation and integration
• Parametric and feature-based CAD modeling
• Reverse engineering and knowledge fusion in product development.

Feature-Based Mechanism Design 305

www.manaraa.com

5.1 Parametric and Feature-Based CAD Modeling

Several methods and procedures have been developed to automate and increase the
efficiency of CAD modeling processes. The depth of data embedded in the CAD
modes greatly depends on the techniques employed to carry out the process [22].
Parametric modeling, among others, has become one of the most rapidly growing
and commonly adopted methods of product modeling in the manufacturing
industries. Much research effort has been focused on modifying the Standardized
Exchange of Product (STEP) format, which contains only geometric information,
to accommodate for additional part-specific parameterized information [15].

This approach takes the traditional CAD geometry modeling method a step
further by enforcing permanent geometric constraints among members of CAD
objects and features. This system has known limitations in terms of validity in
change and modification implementations. Basak and Gulesin’s study [1] sug-
gested and demonstrated a method in which parametric modeling was used in
coordination with feature-based and knowledge fusion approaches to increase its
robustness in the areas constraint validation. This method also used standard
feature libraries to investigate the practicality of proposed part manufacturing
techniques by the designers.

Programming through the application programming interfaces (APIs) of existing
commercial CAD packages provides designers with more flexibility to embed the
design intent into the CAD models [9]. In their approach, Myung and Han [13] took
design unit and functionality features into consideration for the configuration and
CAD modeling of selected products. The work of Wang et al. [25] proposed a
modeling environment integration method by which interactive parametric design
modification was demonstrated using a CAD-linked virtual environment.

The success of parametric modeling greatly depends on the consistency and
preservation of topology of CAD features used in the creation of the part being
modeled. The defined parent–child relationships have to be consistently validated
in order to apply this method in the design process of customizable products. The
use of explicit relationship was suggested by Van et al. [22] to increase user
control and add sophistication to the modeling process.

Although parametric modeling techniques are widely used in today’s design
and manufacturing industries for facilitating CAD modeling processes, their use
has been limited to geometric attributes. Incorporation of additional sets of
information such as product material, method of manufacturing, assembly pro-
cedures, and design intents to the CAD models have been the focus of several
recent research works.

Features, which are basically data structures, have been used to attach addi-
tional information to the CAD models. The type of information ranges from purely
geometric to non-geometric parameters. Traditional features represented only
those attributes related to the geometry of the part. Recently, new types of feature
definitions [20] have been introduced to embed other non-geometric aspects of the
product/part being designed with the CAD models.

306 A. Wubneh and Y.-S. Ma

www.manaraa.com

The employment of parametric and feature-based modeling techniques has been
proven to contribute significantly the implementation of an integrated and auto-
mated product design procedure [26]. The interest of manufacturers in reducing
the time to market and costs associated with the design process has motivated
researchers [27] to investigate features in greater depth. The power of feature-
based modeling methods was coupled with the concepts of reverse engineering
techniques [27] to embed design intents and other constraints into existing prod-
ucts retrieved by CAD scanning techniques (reverse engineering). By employing
this method, manufacturers will reduce the time required to re-fabricate a given
existing product with different materials and modified design constraints.

The data structures of features can handle more than one type of information.
As discussed earlier, information pertinent to product development such as con-
ceptual design intents, geometric constraints, non-geometric parameters, and
manufacturing and assembly procedures can be embedded into the CAD model of
the product by manipulating its feature (data structure). The extent to which this
information can be exploited mainly depends on the feature definition and the level
of organization and communication architectures of the network [26]. Ter et al.
[20] discussed this issue in their work and proposed a high level abstract unified
feature-based approach by categorization and generalization of conceptual data.

The traditional definition of a feature, which used to be merely a description of
the shapes and geometries of the CAD models, has been extended to cover
assembly design features and other vital aspects in regard to manufacturing and
concurrent engineering [3]. Associative relationships, both geometric and non-
geometric, between various parameters of two or more members of an assembly
were discussed by Ma et al. [9]. This ability opens the door for design automation
of frequently updated and modified products. Design customization of products
can benefit from the inclusion of design intents, constraints, and assembly hier-
archy data [2] on the CAD files. Incorporating rules and constraints in the CAD
files in the form of features requires the definition of a new set of features. By
treating a feature more like a data structure than a geometric parameter descrip-
tion, associative relationships between parts that were not previously considered
can be defined. Additionally, the feature definition is extended to cover informa-
tion pertinent to component mating conditions and interfaces within an assembly.

5.2 Design Automation and Integration

The implementation of a collaborative product development process requires a
large amount of data to be transferred between applications used by different
designers working toward a single product [14]. Change and modifications are part
of a two-way process in this approach. Ma and his colleagues defined a data
structure (feature) called operation in an effort to address the need to communicate
data at the feature level [11]. An associative fine-grain product repository mech-
anism with a four-layer information scheme was proposed and demonstrated by

Feature-Based Mechanism Design 307

www.manaraa.com

the team for this purpose. The method was proposed with consideration for the
probability of using different applications and platforms due to the interdisci-
plinary nature of the product design process.

Features, which have a higher level of semantic organization than the simple
geometric aspects of a product, are currently being used to create the link and bridge
the gap in terms of the amount and detail of information needed to be shared by
CAD and CAM systems [12, 18]. Concurrent and collaborative engineering product
development processes require the implementation of an effective change propa-
gation and constraint management mechanism to handle the flow of data between
various development stages. In their work, Ma et al. [10] proposed a unified feature
approach method for constraint management and change propagation to be used in a
collaborative and concurrent environment. The algorithm developed uses the
JTMS-based dependency network. The data model was categorized under con-
straint-based associativity and shares entity references. Lourenco et al. [8], in a
slightly different approach, investigated a method of interactive manipulation of
feature parameters. They proposed a solver-driven algorithm for optimization of
geometric constraints using non-application specific constraint solvers.

Excavator arm mechanisms have been investigated from different research
perspectives. Solazzi discusses [19] the advantages and quantitative analysis of
performance improvements achieved by redesigning an existing hydraulic arm
mechanism with a different material. Yoon and Manurung [28] investigated the
development of a control system by which the operations of an excavator arm
mechanism are controlled by the operator’s own arm movements. Sensors attached
at different joint locations of an operator’s arm are used to map the arm joint
displacements in the mechanism’s motion.

The development of new design automation procedures [16, 21] together with
existing mechanical simulation tools such as SimMechanics of MATLAB� and
MSc ADAMS� have given researchers the opportunity to fully impose explicit
constraints when investigating mechanisms and manipulators’ kinematic and
dynamic responses [23]. The forward and inverse kinematics analyses involved in
the design of mechanisms and manipulators benefit from the implementation of
parametric and feature-based modeling approaches [23]. Work space configura-
tions of manipulators and their dynamic responses require frequent changes and
fine-tuning initial parameters which can be easily implemented with the use of
appropriate feature definitions.

5.3 Reverse Engineering and Knowledge Fusion

Reverse engineering (RE) techniques had been used to extract shapes and
geometries from existing products [4, 5]. The results of RE procedures usually
poorly represent the design logic used to create the parts. The gap between RE
techniques and the requirement of embedding design intents into the CAD files
of products retrieved using this method was discussed by Durupt et al. [4, 5].

308 A. Wubneh and Y.-S. Ma

www.manaraa.com

The traditional RE tools allow creating the geometries of existing products but
lack the capability of embedding the design intents. The method proposed in
Durupt’s work suggested procedures to integrate RE tools with knowledge fusion
techniques. Similarly, Li et al. suggested the use of knowledge-driven graphical
partitioning approaches to include design intents in the RE scan results [7, 24].

Topological approaches have recently become more popular for their ability to
generate 3D free shape models based on finite element concepts. However, like
that of the RE techniques, there is much research to be done before it will be
possible to smoothly extract simple CAD models from these shapes. The work of
Larsen and Jensen [6] focuses on the investigation of methodologies to extract
parametric models out of topologically optimized 3D shapes.

6 The Proposed Approach

Product modeling involves creating and combining individual basic semantic
entities called features and further generating part geometries. A feature is a data
structure with members of geometric elements and associative relations. The
ability to create relationships between the data members of different features
allows controlling part dimensions parametrically. With this modeling approach,
constraints can be imposed on the geometric entities defining the features. The data
from the features can be easily accessed and modified, making this method ideal
for managing change propagations and modifications in the design process. In
addition to geometric parameters, these features can be designed to store other
design entities such as part material specifications and manufacturing methods.
The fact that features are basically data structures allows them to play an important
role in the automation processes of conceptual design cycles.

In this chapter, we will propose and discuss two methods to be used in the
implementation of feature-based CAD modeling techniques in the development
and design of automation processes of variational mechanisms.

6.1 General Design Automation Method

The design of mechanisms and products that are subject to frequent changes and
modifications involves several application-dependent processes utilizing a set of
common data. The given specifications, standards, and design requirements may
be changed at any time during the development process. These changes can be
evoked by customers as well as due to newly arising engineering requirements.
Without a system to address these changes efficiently, the costs associated with the
modifications could undermine the product need.

This section proposes a method by which such changes and design intent
modifications are handled in a very cost-effective and timely manner using a
feature-based approach to reduce the CAD modeling and the overall design cycle

Feature-Based Mechanism Design 309

www.manaraa.com

times. By employing commercially available programming and feature-based 3D
modeling tools, it is possible to create a reliable automation procedure which
accommodates for inevitable changes and modifications in the design process.

6.2 The Proposed Design Procedure

The following flowchart summarizes the general automation procedure proposed
for this purpose. The area of data communications between different programming
and modeling tools are beyond the scope of this chapter. The authors will instead
focus on the intended communication, which is achieved through the use of neutral
text data files written and updated by program codes developed for this purpose.

In Fig. 1, the design process begins with input information in the form of user
specifications. This input, together with additional engineering rules and intents, is
used by the Kinematic Analysis algorithm (discussed in the next section) to syn-
thesize the linear dimensions of the mechanism. These dimensions will then be used
as the skeleton assembly model in an initial kinematic and dynamic analysis. This
analysis results in the identification of forces and moment reactions between con-
tacting joints and bodies. The output of the Dynamic Analysis and Simulation module
will be used to establish the free body diagrams (FBDs) and mass-acceleration
diagrams (MADs) which will be used during the design and optimization phases.

Results obtained in these stages, together with the initial input specification
values, will be used in the design of linkages and members of the mechanism. One
or more applicable optimization criteria can be used in order to determine a set of
optimum cross-dimensional parameters for the machine elements. In addition to
the abovementioned considerations in the design and optimization phases, several
additional factors may be considered (depending on the type of product) such as
design codes, standards, assumption, and safety factors.

Based on dimensional data determined by previous processes, the 3D models of
the mechanism components will be modeled using feature-based techniques.
Application Programming Interfaces (API) of most commonly used modeling
platforms can be used for this purpose. The choice of the programming and
modeling tools depends on the compatibility of tools and the familiarity of the
personnel using them.

For this case study, the programming component was carried out in C++ pro-
gramming using Visual Studio 2008�. The final 3D models were generated from
the codes using the UG NX 7.5 modeling software. These models, preferably
assembled, will be exported back to the Dynamic Analysis and Simulation block to
take the effects of their newly created dimensions (inertia effects) into consider-
ation. This first stage loop will be repeated until a stopping criterion is met.

The strength and deformation of parts and models passing this screening stage
can be further examined using FEA techniques. In the event these components fail
to meet the qualification criteria set for the FEA stage, the entire iteration can be
restarted with modified input parameters to address the shortcomings.

310 A. Wubneh and Y.-S. Ma

www.manaraa.com

7 Features and Data Structures

Concurrent engineering and product development processes involve the partici-
pation of personnel with different engineering and technical backgrounds. In most
cases these individuals work from within different departments, requiring an
efficient mechanism for smooth information transfer among them.

Fig. 1 Design process modules and data communication routes

Feature-Based Mechanism Design 311

www.manaraa.com

Any information, whether in the form of initial input or generated data, has a
very good chance of being used by more than one function module or application.
In addition, a series of design data for a particular product family needs to be
stored in a systematic repository database due to its potential for future use in the
areas of knowledge fusion, as well as a training source for artificial neural network
applications.

Data structures, implemented by using object-oriented programming tools,
address these needs. The Product Specification input shown in Fig. 1 needs to be
organized systematically and its scope needs to be defined as ‘‘global’’ or ‘‘local’’
in order to establish its accessibility by individual program modules. This is done
by defining a data structure and instantiating its object. The following is an
example of a class defined in MATLAB�. The data structure for handling a
particular problem is defined by creating an object instance of this class and
entering values to its data members.

classdef Product_Specification_c
properties

Title = 'Specification Parameters'
T_1 = 'Geometric Spec.'
G1 = 0;
G2 = 100;
Gn = 0;
T_2 = 'Material Spec'
Modulus_Elasticity = 210e9;
Poisson_ratio=0.3;

end
end

For example, a data structure for a new product model called Prod-
uct_Spec_2010 is created by instantiating the above definition and using the fol-
lowing command. (Note: Neither this particular example data structure nor its
values are real; they are used here only for explanatory purposes.)

global Product_model_2010
Product_model_2010 = Product_Specification_c

The values of this data structure are updated using the following object-oriented
programming syntax:

Product_model_2010.G1: new value
Product_model_2010.G2: new value
Product_model_2010.Gn: new value
Product_model_2010.Modulus_Elasticity: new value
Product_model_2010.Poisson_ratio: new value

The collection and input methods of the individual entities for the data structure
greatly depend on the convenience and applicability to a particular problem. Initial

312 A. Wubneh and Y.-S. Ma

www.manaraa.com

values can be assigned during the definition of the data structure, or they can be
updated afterward using both the command line and graphical user interfaces
(GUI).

The following is a real example data structure taken from the excavator arm
mechanism case study.

classdefc_Spec_Data_SI
properties
 Title = 'Commercial Specifications and Vehicle Dimensions'
 Maximum_Reachout_at_Ground_Level_S1 = 0;
 Maximum_Digging_Depth_S2 = 0;
 Maximum_Cutting_Height_S3 = 0;
 Maximum_Loading_Height_S4 = 0;
 Minimum_Loaidng_Height_S3 = 0;

Horizontal_Distance_H = 0;
Vertical_Distance_V = 0;
Vehicle_Weight = 5000;

end
end

An object of this structure, SpcDat, instantiated and completed with its own
values takes the form:

SpcDat = c_Spec_Data_SI
Properties:

 Title: 'Commercial Specifications and Vehicle Dimensions'
 Maximum_Reachout_at_Ground_Level_S1: 5.6700
 Maximum_Cutting_Height_S3: 3.7248
 Maximum_Loading_Height_S4: 1.3521

Horizontal_Distance_H: 0.9857
Vertical_Distance_V: 1.2300

Vehicle_Weight: 5000

The set of data generated within the Product Specification (PS) module is used
directly by the Kinematic Analysis (KA) module when calculating the linear
dimensions of the mechanism or manipulator. The KA, in turn, generates its own
data structure and makes it available for use by downstream functional modules.

The number of programming applications and tools involved in the system dictate
the number of databases involved. If there are two or more programming tools
running on different platforms involved, it may be required to devise a mechanism
by which their respective databases are able to communicate with each other.

In Fig. 1, it is assumed that the programming environment used for kinematic
analysis and dimensional synthesis is different from the one employed by the API
of the CAD modeling application, as this is the usual case. This is a very common
practice since MATLAB� and Maple are usually used for engineering design
calculations and optimizations processes while C#, C++, and VB are used for
programming CAD with the API tools. However, all of these tools are expected to

Feature-Based Mechanism Design 313

www.manaraa.com

operate based on a common set of data models and parameters produced during the
initial phase of the conceptual design cycle. Accordingly, Data 1 and Data 2 in
Fig. 1 are communicated by neutral intermediate text data files. Similar data
structures need to be defined from within the other programming applications
involved to read and import the data exported by other applications. These defi-
nitions do not have to be an exact copy of the previous one as long as the necessary
parameters are imported. Defining all corresponding data structures consistently
avoids confusion and facilitates better data management.

The concept of feature has been investigated in great depth in recent decades to
address emerging product development and manufacturing needs and challenges.
Originally, the term feature was used to refer only to the geometrical aspects of a
model such as slots, holes, and chamfers. Since the product development process
involves much more than geometric entities, researchers have sought ways of
embedding more information into the CAD models. Consequently, today’s features
have a much broader definition; both geometric and non-geometric information are
embedded in the model, aiding in rapid and reliable product information transfer.
Some of the many features developed in the work reported here include:

• Coordinate system (CSYS) features: Used in the creation of relative and
absolute CSYS

• Skeleton functional features: Used in the development of skeleton product
profiles

• Embodiment features: Features responsible for creation of 3D geometries
• Sheet body features
• Solid body features
• Curve features.

8 Linkage Geometry Design

8.1 Homogeneous Coordinate Transformation

The output of the SimMechanics simulation provides only joint forces and motions
expressed in the global reference frame. These global generalized joint forces have
to be transformed into and expressed in separate coordinate systems local to the
links or frame members under investigation. In order to achieve this, three coor-
dinate transformation matrices are developed. The boom, due to its geometrical
deflection, has two sides and requires two different matrices to express forces in
frames local to these sides. Since the stick has a straight axis, it needs only a single
transformation matrix for reference frame manipulation.

The first step in this process is to identify stationary angles which, together with
the linear dimensions, help to fully define the geometry of the boom and stick
parts. This is followed by defining variable angles responsible for the operational
configuration of the arm mechanism—in this case, the digging operation (Fig. 2).

314 A. Wubneh and Y.-S. Ma

www.manaraa.com

As shown in Figs. 3 and 4, angle dig1 and dig2 define the orientations of the
boom and the stick with respect to the ground during a digging operation. Unlike
static angles which are always assigned positive values, variable angles are
direction-sensitive.

8.2 Boom Geometries

Referring to Fig. 3, expressions for variable angles dig1 and dig2 can be formu-
lated as follows.

Summing the components of vectors along the horizontal direction gives:
X

Vx ¼ S1 � H ð1Þ

Variable Angles
Angles defining relative positions
of connected parts (operational
configuration angles)

Static/Inherent Angles

Semi-static angles
Angles modified as a result of
design iterations

Permanent Angles
Safety clearance angles

Angles

Fig. 2 Classification of angles

Fig. 3 Operational configuration angles

Feature-Based Mechanism Design 315

www.manaraa.com

l1 cosðdig1Þ þ l2 cos dig2ð Þ þ l3 cos dig2ð Þ ¼ S1 � H ð2Þ

l1 cos dig1ð Þ þ l2 þ l3ð Þ cosðdig2Þ � S1 þ H ¼ 0 ð3Þ

Similarly, summing the components of these vectors along the vertical direction
gives another expression.

X
Vy ¼ 0 ð4Þ

V þ l1 sin dig1ð Þ þ l2 þ l3ð Þ sin dig2ð Þ ¼ 0 ð5Þ

Solving Eqs. (3) and (5) simultaneously gives the values of dig1 and dig2. The
homogeneous coordinate transformation matrices for the first and second side of
the boom are then derived using these calculated angles.

Boom Rotation Matrix I, RB1

RB1 ¼
cosðdig1þ bÞ � sinðdig1þ bÞ 0
sinðdig1þ bÞ cosðdig1þ bÞ 0

0 0 1

2

4

3

5 ð6Þ

Boom Rotation Matrix II, RB2

RB2 ¼
cosðdig1� bÞ � sinðdig1� bÞ 0
sinðdig1� bÞ cosðdig1� bÞ 0

0 0 1

2

4

3

5 ð7Þ

Fig. 4 Stick structural
angles

316 A. Wubneh and Y.-S. Ma

www.manaraa.com

8.3 Stick Rotation Matrix

Since the axis of the stick is not parallel to the axis of the second section of the boom,
the transformation matrix developed for the second part of the boom cannot be
directly used to transform global forces into the frame of reference local to the stick.

The rotation matrix for the stick is formulated by carefully observing the
subsequent chain of angular transformations starting from joint J1.

tan J9Lð Þ ¼ hstick

htail

ð8Þ

J9L ¼ tan�1 hstick

htail

� �
ð9Þ

J9U ¼ J9L ð10Þ

J9 ¼ J9U þ J9L ¼ 2� J9L ð11Þ

TS2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2 � h2

stick

q
ð12Þ

J2l ¼ tan�1 htail

hstick

� �
ð13Þ

J2r ¼ tan�1 TS2

hstick

� �
ð14Þ

J2 ¼ J2l þ J2r ð15Þ

J3l ¼ tan�1 hstick

TS2

� �
ð16Þ

J3U ¼ J3L ð17Þ

J3 ¼ J3L þ J3U ¼ 2� J3L ð18Þ

RZ;ðbþdig1Þ ! RZ;�2b ! RZ;J2 ! RZ;ðJ9L�180Þ ð19Þ

net angle of rotation ¼ bþ dig1� 2bþ J2þ J9L � 180
¼ dig1� bþ J2þ J9L � 180 ð20Þ

The stick rotation matrix RS is then given by the expression:

RS ¼
cos ðdig1� bþ J2þ J9L � 180Þ � sin ðdig1� bþ J2þ J9L � 180Þ 0
sin ðdig1� bþ J2þ J9L � 180Þ cos ðdig1� bþ J2þ J9L � 180Þ 0

0 0 1

2

4

3

5 ð21Þ

Feature-Based Mechanism Design 317

www.manaraa.com

8.4 Transition Four-Bar Dimensional Synthesis

The major linear dimensions defining the working range of the overall mechanism
have already been synthesized using the method developed in the previous chapter.
For the purpose of making the mechanism complete, the transition four-bar
mechanism’s dimensions have to be synthesized for the given dimensions of
standard buckets and sticks. For a given dimension of the bucket bo, the length of
the other two linkages of the transition four-bar mechanism can be calculated as
follows.

As shown in Fig. 5, there are two configurations of the four-bar linkage
mechanism resulting in a phenomenon called ‘‘mechanism lock.’’ These two
angular positions are considered to be the upper and lower range limits within
which the bucket operates.

In Fig. 5, cec is the eccentricity angle necessary to prevent the mechanism from
self-locking. cs1 is the minimum angle between the back of the bucket and the
stick. The value of cs1 depends on the safety clearance angle necessary to avoid
physical contact between the links. The value of this angle is subject to change
during the life of the design cycle, reflecting changes in the dimensions of the
contacting parts as a result of cyclic modifications.

cs2 serves the same purpose as cs1 but on the opposite end of the bucket’s
angular displacement range. Limiting factors in this case include direct contact
between mechanical components and volumetric allowance for extra bulk material
when loading the bucket. In addition to bo and b1, these two angles are assumed to
be known to evaluate the lengths of links b2 and b3.

The critical values of b2 and b3, i.e., those that result in mechanical locking of
the mechanism, are determined from the following two simplified geometries
corresponding to the two cases as shown in Figs. 6 and 7.

Applying Law of Cosines to the geometry of Fig. 6 we get

b2
3 ¼ b2

o þ b1 þ b2ð Þ2�2b0 b1 þ b2ð Þ cos cs1 ð22Þ

Fig. 5 Transition four-bar work ranges

318 A. Wubneh and Y.-S. Ma

www.manaraa.com

Similarly referring to Fig. 7

b2
3 ¼ b2

o þ b2 � b1ð Þ2þ2b0 b2 � b1ð Þ cos cs2 þ cbkð Þ ð23Þ

Solving Eqs. (22) and (23) simultaneously gives the values of b2 and b3.
This calculation is implemented using the custom MATLAB� function

f_Four-bar_Solver in the main program.

9 Stress and Strength Calculations

9.1 Basic Stresses Involved

The expressions for the various stresses considered in this section are developed
based on the assumptions and procedures outlined by Shigley and Mischke [17].

9.1.1 Transverse Shear Stress, sb

Shear stress, s; as a result of shear force and bending moment is derived from the
relation (Fig. 8)

Fig. 6 Upper mechanism locking configuration

Fig. 7 Lower mechanism locking configuration

Feature-Based Mechanism Design 319

www.manaraa.com

V ¼ dM

dx
ð24Þ

s ¼ VQ

Ib
ð25Þ

where Q is the first moment of area about the neutral axis given by:

Q ¼ ZC

y1

y dA ð26Þ

Q for the given cross-sectional geometry computed by dividing the area into
two sections.

Case 1

For 0\ y1j j\ h
2 � t
� �

Q ¼ Zh=2

y1

y dA ¼ Z
h
2�t

y1

y dA1 þ
Z
h
2

h
2�t

y dA2 ð27Þ

where dA1 ¼ 2t dy and dA2 ¼ b dy

Q1 ¼
Z

h
2�t

y1

2ty dyþ Z
h
2

h
2�tð Þ

by dy ð28Þ

Q1 ¼ t
h

2
� t

� �2

� ty2
1 þ

btðh� tÞ
2

ð29Þ

Case 2
For ðh2� tÞ� y1j j � h

2

Q2 ¼
Zh=2

y1

y dA2 ¼
Zh=2

y1

by dy ð30Þ

Fig. 8 Cross-sectional area under transverse shear stress

320 A. Wubneh and Y.-S. Ma

www.manaraa.com

Q2 ¼
b

8
h2 � 4y2

1

	

ð31Þ

The second moment of area of the entire cross section,I; is given by

Qmax ¼ t
h

2
� t

� �2

þ bt h� tð Þ
2

ð32Þ

I ¼ bh3

12
� b� 2tð Þ h� 2tð Þ3

12
ð33Þ

smax ¼
VQmax

Ib
ð34Þ

bmax ¼ 2t ð35Þ

sb ¼
V t h

2� t
	
2þ bt h�tð Þ

2

h i

2t bh3

12 �
b�2tð Þ h�2tð Þ3

12

h i ð36Þ

9.1.2 Torsional Stress, stor

The equations expressing torsional stresses in the cross-sectional areas are
developed based on the assumptions and procedures outlined by Shigley and
Mischke [17].

Area of torsion, Ator, is given by the following expression (Fig. 9).

Ator ¼ b� 2
t

2

� �
h� 2

t

2

� �
ð37Þ

Ator ¼ b� tð Þ h� tð Þ ð38Þ

The torsional stress, stor, is given by

stor ¼
T

2 b� tð Þ h� tð Þt ð39Þ

where T, the torque creating the torsional stress, is recorded at every joint during
the simulation of the mechanism in the SimMechanics environment.

9.1.3 Direct Stress, rdx

Area of direct stress distribution is given by the expression

Adx ¼ 2 bt þ tðh� 2tÞ½ � ð40Þ

Feature-Based Mechanism Design 321

www.manaraa.com

For a given axial longitudinal force, Fax, the direct stress is calculated by using
the formula

rdx ¼
Fax

Adx
ð41Þ

rdx ¼
Fax

2 bt þ tðh� 2tÞ½ � ð42Þ

9.1.4 Bending Stresses, rzx

Bending stress, rzx, due to bending moment acting about the z-axis, Mz, is given
by:

rzx ¼ �
Mzy

Izz
� h

2
� y� h

2

� �
ð43Þ

where Izzis the second moment of area of the cross section about the centroidal z-
axis and it is given by:

Izz ¼
bh3 � b� 2tð Þðh� 2tÞ3

12
ð44Þ

Fig. 9 Torsional cross-
sectional area

322 A. Wubneh and Y.-S. Ma

www.manaraa.com

This stress reaches its maximum value when at the outer most boundaries of the
cross section, i.e., when:

y ¼ � h

2
ð45Þ

rzx maxð Þ ¼ �
6Mzh

bh3 � b� 2tð Þðh� 2tÞ3
ð46Þ

In a similar manner, bending stress, ryx, due to moment acting about the y-axis
is given by:

ryx ¼ �
Myz

Iyy
� b

2
� z� b

2

� �
ð47Þ

where Iyy in this case is the second moment of the cross-sectional area about the
centroidal y-axis

Iyy ¼
hb3 � h� 2tð Þðb� 2tÞ3

12
ð48Þ

ryx maxð Þ ¼ �
6Mzb

hb3 � h� 2tð Þðb� 2tÞ3
ð49Þ

Superposition of the effects of these two bending stresses and the direct stress
gives the maximum value of stress in the x-direction.

rxx maxð Þ ¼ rdx þ ryx maxð Þ þ rzx maxð Þ ð50Þ

9.2 Pin Design

9.2.1 Methods of Pin Failure

1. Localized contact stress
2. Failure of pin due to double shear
3. Failure of pin due to bending moment.

9.2.2 Contact Stresses

The interaction between the pin and the casing is modeled by a cylinder-plane
contact instead of cylinder–cylinder contact. The resulting magnitudes of Hertz’s
contact stresses will have relatively higher values than if they were calculated using
the cylinder–cylinder assumption because of the reduced contact area (Fig. 10).

Feature-Based Mechanism Design 323

www.manaraa.com

where
d1 Diameter of pin
d2 Diameter of base hole
m1 Poisson’s Ratio of the pin material
m2 Poisson’s Ratio of the base material
E1 Young’s Modulus of Elasticity of the pin material
E2 Young’s Modulus of Elasticity of the base material.

The total force exerted on the first end of the pin is given by:

Fp ¼
Fx
2 þ

My

lp
Fy

2 þ
Mx
lp

0

2

64

3

75 ð51Þ

where dp and lp are the pin diameter and its effective length, respectively.
The magnitude of this force, Fpin, is:

Fp ¼

ffi
Fx

2
þMy

lp

� �2

þ Fy

2
þMx

lp

� �2
s

ð52Þ

9.2.3 Hertz’s Contact Stress

The maximum stress due to contact between the surfaces of the pin and the base is
calculated using the Hertz’s method. The contact zone between these two surfaces
is approximated by a rectangular region. The width of this region, commonly
known as ‘‘contact half width’’ is calculated by using the formula:

Fig. 10 Pin loads in global vertical and horizontal planes

324 A. Wubneh and Y.-S. Ma

www.manaraa.com

b ¼ kb

ffiffiffiffiffiffiffiffiffi
Fplp

p
ð53Þ

where kb ¼

ffi

2
pt

1�m2
1

E1
þ 1�m2

2
E2

� �

1
d1
þ 1

d2

vuuut ð54Þ

Since the casing holes are modeled by a plane for the purpose of making the
design compatible with higher stresses, the reciprocal term containing d2 will be
approximated by zero. The resulting expression takes the form:

kb ¼

ffi

2d1
1�m2

1
E1
þ 1�m2

2
E2

� �

pt

vuut
ð55Þ

The maximum contact pressure is then written as a function of the length lp

	

and diameter dp

	

of the pin as follows:

Pmax lp; dp

	

¼ 2Fplp

pbt
ð56Þ

The resulting principal stresses in the pin are given by the relations

rx ¼ �2m1
2Fplp
pbt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z

b

� �2
r

� z

b

���
���

" #

ð57Þ

ry ¼ �
2Fplp

pbt

1þ 2 z
b

	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

b

	
2
q � 2

z

b

���
���

2

64

3

75 ð58Þ

rz ¼ �
2Fplp
pbt

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 z

b

	
2
q ð59Þ

To calculate the maximum value of stress from one of these three equations,
these stress are computed at the critical section z=b ¼ 0:786

rx ¼ �1:944m1
Fplp
pbt

ð60Þ

ry ¼ �0:371
Fplp

pbt
ð61Þ

rz ¼ �1:572
Fplp

pbt
ð62Þ

The allowable contact stress is generally taken as the minimum of ry=4 or ru=6.

Feature-Based Mechanism Design 325

www.manaraa.com

9.2.4 Failure of Pin Due to Double Shear

The total shear area of each pin is represented by the equation (Fig. 11)

Ash ¼ 2
pd2

p

4
ð63Þ

Direct shear stress on the pin is calculated by dividing the shearing force by the
total area. An equation for this stress is derived in terms of the pin length and the
pin diameter so that it can be used in calculating an optimum values for these two
pin dimensions.

ssh ¼
2 Fp

�� ��

Ash

ð64Þ

ssh ¼
4 Fp

�� ��

pd2
p

ð65Þ

9.2.5 Failure of Pin Due to Bending Moment

Referring to Fig. 12 for the loading distribution, the maximum bending moment at
the mid-span of the pin is given by the expression:

t1 ¼ t þ eb1 ð66Þ

t2 ¼ t þ eb2 ð67Þ

Mmax ¼ Fp
t1

3
þ t2 þ

lp
2

� �
� Fp

t2
2
þ lp

2

� �
ð68Þ

Fig. 11 Pin under double
shear

326 A. Wubneh and Y.-S. Ma

www.manaraa.com

where eb1 and eb2 are base reinforcement extensions.
The maximum bending stress is then given by substituting the above expression

into the general formula

rb ¼
Mmax

z
ð69Þ

rb ¼
Fp

t1
3 þ

t2
2

�

p
32 d3

p

ð70Þ

10 Mechanism Dynamics Analysis with Virtual
Mechanism Modeling and Simulation

The design process of linkages and members in the mechanism requires the
identification of generalized reaction forces at each joint. These forces will be used
in the free body diagrams (FBD) and mass-acceleration diagrams (MAD) during
the design stages. This task is implemented by using SimMechanics�, the
mechanical simulation and analysis tool available in MATLAB� software.

10.1 Simulation Setup

Now that the major linear dimensions of the mechanism are identified, the next
step is determining the reaction forces and moments experienced by each joint as a
result of the digging operation. To do this, a skeleton mechanism is constructed

Fig. 12 Bending load
distribution on pins

Feature-Based Mechanism Design 327

www.manaraa.com

using the previously calculated linear dimensions in the SimMechanics modeling
environment of MATLAB�. Using a skeleton mechanism provides the flexibility
of calculating interaction forces and exporting the results into the workspace for
further processing. Furthermore, during latter stages of the design cycles, the
weightless links can be substituted by their 3D counterparts and the simulation can
be re-run to consider the inertia effects.

When using this tool, the mechanism under investigation is constructed by
connecting linear linkages of prescribed inertia properties with virtual mechanical
joints available in the joint library. The virtual weld joint is used in the event it is
required to model bending, splitting, or merging mechanical members. For this
approach to be viable in the automation of design processes, two general
requirements have to be met. The first is that all linear dimensions need to be
defined either numerically or symbolically. The second is that all forms of mating
constraints between connecting members have to be imposed by the use of joints
and limits on joint parameters.

Although it is possible to assign inertia properties to these bodies in the initial
stages as mentioned above, the procedure adopted in this case study uses a dif-
ferent approach, deemed more suitable for cyclic modifications. The first round of
the simulations starts with weightless and high-stiffness rigid bodies; further
simulations will be carried out with updated 3D solid bodies produced as a result
of previous design cycles.

The necessary kinetic and kinematic joint variables registered during the simu-
lations are extracted to MATLAB� workspace using the Simulink� scope readers.
SimMechanics Link�, another useful tool to import and export CAD solid models
into and out of the SimMchanics� simulation environment, supports only Solid-
Works� and Pro/E�, but not UG NX. To overcome this issue, SolidWorks is used as
an intermediate file transfer tool in exporting the 3D models to SimMechanics.

10.2 Simulink Model Construction

Figure 13 shows the major components of an excavator arm mechanism while
Fig. 14 shows the representation of the same mechanism by linear components.
The latter model is constructed in SimMechanics environment using the standard
rigid body and joint library.

10.3 Boom Construction

The boom as shown in Fig. 15 has two sides: BS1 and BS2. It is hinged to the
vehicle body with joint J1 and to the stick with joint J2. Joints J10 and J11 are
connecting points for hydraulic cylinders C2 and C1, respectively. The deflection
of the structure by an angle 2b is modeled by welding the two linear sides.

328 A. Wubneh and Y.-S. Ma

www.manaraa.com

The two hinges for the hydraulic cylinders, J10 and J11, are located at the end
of the extension sticks h_J10 and h_J11 to represent for an initial thickness of the
boom. The values of these lengths are updated at the end of each conceptual design
cycle from the cross-sectional calculation results. This is done because the hinge
locations are assumed to be on the surfaces of the boom which are subject to
modification at the end of each conceptual design cycle (Fig. 16).

Fig. 13 Typical excavator arm mechanism

Fig. 14 Skeleton representation of excavator arm mechanism

Fig. 15 Skeleton
representation of boom
structure

Feature-Based Mechanism Design 329

www.manaraa.com

10.4 Stick Construction

The stick has four joints: J2 connects the stick with the boom while J3 connects it
with the bucket. The transition four-bar mechanism is connected with the stick at
joint J6 with revolute joint. Joint J8 is the connection point for the second
hydraulic cylinder, C2.

Again in this case, the final distances of hinges J2 and J8 from the longitudinal
axis of the stick, h_J2 and h_J8, are determined based on the final 3D dimensions of
the stick. To start the simulation, however, initial values are assigned for these
dimensions. These parameters will be updated at the end of each cycle (Figs. 17, 18).

10.5 Bucket Modeling

The bucket, which is the follower link of the transition four-bar mechanism, has
only two joints: J3 and J4 to connect it to the stick and the coupler link of the four-
bar, respectively (Figs. 19, 20).

The application point of the ground reaction force is selected in such a way that
the overall mechanism will be subject to severe loading conditions. Twisting
movements about the x-axis and bending movements about the y- and z- axes
register maximum readings when the digging force is applied on the bucket at a

Fig. 16 SimMechanics model of boom

330 A. Wubneh and Y.-S. Ma

www.manaraa.com

point furthest from the x-axis. An eccentricity loading distance of half the width of
the bucket is introduced for this purpose as shown in Fig. 21.

10.6 Hydraulic Cylinders

Hydraulic cylinders are represented by simple weightless rigid links solely for the
purpose of keeping the mechanism rigid. The forces registered at the opposite ends
of these links can be used to determine the required hydraulic capacity of the

Fig. 17 Skeleton
representation of stick

Fig. 18 SimMechanics model of stick

Feature-Based Mechanism Design 331

www.manaraa.com

cylinders. However, this task is beyond the scope of this research and will not be
discussed here.

10.7 Transition Four-Bar Linkages

The two remaining linkages in the transition four-bar mechanism are represented
by simple blocks with joints at both ends. The actual total number of revolute
joints in the mechanism is 11. However, in the SimMechanics model one more
joint needs to be introduced due to the location of the hydraulic force application
point on the driving link of the transition four-bar. Two coaxial joints in the real
mechanism are required to be modeled by combining them into a single joint.
Because this point is chosen to be at the connection point of the driving and

Fig. 19 Bucket schematics

Fig. 20 Bucket SimMechanics model

332 A. Wubneh and Y.-S. Ma

www.manaraa.com

coupler links, an additional redundant hinge joint was required for creating a three-
branch connection. This representation will not have any negative effect on the
final outcome of the analysis.

The above SimMechanics sub-models are assembled and simulation environ-
ment parameters are defined. Figure 22 below shows the final assembled Sim-
Mechanics Model of the excavator arm mechanism in the real-time simulation
window.

The simulation for this model is run for two seconds at the digging orientation.
Scopes in the model such as SD1; SD2; . . .; SD12 register and export joint variable
data to the MATLAB� workspace in vector form. Because of the selection of the
digging mode for the design purpose, it was not necessary to define angular
displacement and speed limits.

Figure 23 shows the assembled SimMechanics diagram of the excavator arm
mechanism. The digging force is represented by a constant vector and is applied at
the left tip of the bucket.

11 Example Simulation Analysis

An example problem is investigated in this section to demonstrate the applicability
of the proposed methods. The methods and the necessary engineering rules and
design intents are programmed and implemented in MATLAB�. This demon-
stration will be carried out in two stages, which are designed to show the opera-
tional procedures of the two proposed methods and their corresponding results.

Fig. 21 Location of
application point of digging
force

Feature-Based Mechanism Design 333

www.manaraa.com

Fig. 22 Real-time simulation environment

Fig. 23 SimMechanics diagram for an excavator arm mechanism

334 A. Wubneh and Y.-S. Ma

www.manaraa.com

The first stage deals with the application of the hybrid ANN-Optimization tech-
nique in the process of dimensional synthesis of mechanisms. In the second sec-
tion, the calculations involved and the generated results in the areas of
optimizations of cross-sectional dimensions of the boom and the stick will be
discussed. The input for the module handling the dimensional synthesis is a set of
required output configurations of the excavator arm mechanism. As discussed
before, these values are checked for compatibility to ensure the feasibility of their
co-existence.

Input Problem:

SpcDat = c_Spec_Data_SI

Properties:
 Title: 'Commercial Specifications and Vehicle Dimensions'
 Maximum_Reachout_at_Ground_Level_S1: 5.6700
 Maximum_Cutting_Height_S3: 3.7248
 Maximum_Loading_Height_S4: 1.3521

Horizontal_Distance_H: 0.9857
Vertical_Distance_V: 1.2300
Vehicle_Weight: 5000

Once the linear dimensions of the overall mechanism are calculated, the next
task will be calculating the optimum cross-sectional dimensions of the boom and
the stick. This process is started by defining the necessary geometric and non-
geometric constraints. In addition to these constraints, initial values for some
variables and iteration-dependent dimensions are also initiated at this stage.

Bucket geometric properties:

BuckGeo= c_Bucket_Geo_SI

Properties:
 Title: 'Bucket Geometries and Dimensions'

 Bucket_Length_l3: 0.8112
 Bucket_Width_BW: 0.4867

 Bucket_Height_b0: 0.2839
 Bucket_Pin_Width_bw: 0.2434
 Bucket_Angle_teta_bucket: 95
 Bulk_Volume_Clearance_Angle: 40
 Maximum_Upward_Bucket_Open_Limit_Angle: 35

Feature-Based Mechanism Design 335

www.manaraa.com

Dimensional Constraints:

Dimensional_Constraints = c_Dimensional_Constraints_SI

Properties:
 Title: 'Structural Dimensions Constraints'
 Minimum_Plate_Thickness: 0.0070
 Maximum_Plate_Thickness: 0.0200
 Minimum_Base_Dimension: 0.1000
 Maximum_Base_Dimension: 0.5000
 Minimum_Boom_and_Stick_Height: 0.0100
 Maximum_Boom_Height: 0.5000
 Maximum_Stick_Height: 0.5000
 Extension_of_Boom_Pin_Reinforcement: 0.0140
 Extension_of_Stick_Pin_Reinforcement: 0.0140

Material Properties:

MaterProp = c_Material_Properties_SI

Properties:
 Title: 'Material Selection and Properties'

Prpertiy: 'Poisons E YS_kpsiTS_kpsiYS_MPaTS_MPaElong_2%
Area_% BHN'

Pin_Material: [0.3000 210 234 260 1612 1791 12 43 498]
Base_Material: [0.3000 210 26 47 179 324 28 50 95]
Allowable_Stress_in_Pin: 447750000

Poison_Ratio_Pin: 0.3000
Youngs_Modulus_Pin: 2.1000e+011

Allowable_Stress_in_Base: 81000000
Poison_Ratio_Base: 0.3000
Youngs_Modulus_Base: 2.1000e+011
Safety_Factor_Pin: 1.1500
Safety_Factor_Boom: 1.1500
Safety_Factor_Stick: 1.1500
Safety_Factor_Linkages: 1.1500

Initial Variable Linkage Imitation:

InitialParam = c_Initial_Parameters_SI

Properties:
 Title: 'Initial Values for Variable Dimensions'
 Distance_to_J2_and_J8_on_Stick: 0.1000
 Distance_to_J10_on_Boom: 0.1000
 Distance_to_J11_on_Boom: 0.1000

336 A. Wubneh and Y.-S. Ma

www.manaraa.com

Linkage Geometries:

LinkDims= c_LinkDims_SI

Properties:
 Title: 'Boom and Stick Dimensions'
 Boom_Shortcut_Length_l1: 2.7126
 Boom_Deflection_Angle_betta: 35.6055
Side_Length_of_Boom_T: 1.6682
Stick_Length_l2: 1.5616
 Stick_Angle_J2: 156.9267
 J2_left: 70.5982
 J2_right: 86.3285
 Stick_Angle_J8: 156.9267
 J8_left: 70.5982
 J8_right: 86.3285
 Stick_Angle_J9: 38.8037
 J9_up: 19.4018
 J9_lower: 19.4018
 Stick_Angle_J3: 7.3429
 J3_up: 3.6715

J3_lower: 3.6715
 Distance_to_J2_and_J8_on_Stick: 0.1000

 Distance_to_J10_on_Boom: 0.1000
 Distance_to_J11_on_Boom: 0.1000
 Stick_Tail_Length: 0.2839
 Stick_Forward_Length: 1.5584

Transition Four-bar Dimensions:

FourbarDims = c_Fourbar_Solver_SI

Properties:
 Title: 'Fourbar Linkage Dimensions'
 Fourbar_Link_b0: 0.2839
 Fourbar_Link_b1: 0.3692
 Fourbar_Link_b2: 0.4461
 Fourbar_Link_b3: 0.2434

Feature-Based Mechanism Design 337

www.manaraa.com

Operational Configuration Matrices and Variables:

OperConfig = c_Operational_Configuration_SI

Properties:
Title: 'Configuration Parameters and Rotational Matrices'

 Boom_opertating_angle_dig1: 1.8619
 Boom_Rotational_Matrix_Sec1_RB1: [3x3 double]
 Boom_Rotational_Matrix_Sec2_RB2: [3x3 double]
 Stick_Rotational_Matrix_RS: [3x3 double]
 Fourbar_teta_1: 72.8748
 Fourbar_teta_2: -36.7587
 Fourbar_teta_3: 278.6715

Generalized Joint Forces and Moments:

Joint_Forces = c_Joint_Forces_SI

Properties:
 Title: 'Generalized Forces on Joints'
JointForces: [12x7 double]
 FORCES: ''
 F1: [3x1 double]
 F2: [3x1 double]
 F3: [3x1 double]
 F4: [3x1 double]
 F5: [3x1 double]
 F6: [3x1 double]
 F7: [3x1 double]
 F8: [3x1 double]
 F9: [3x1 double]
 F10: [3x1 double]
 F11: [3x1 double]
 F12: [3x1 double]
 MOMENTS: ''
 M1: [3x1 double]
 M2: [3x1 double]
 M3: [3x1 double]
 M4: [3x1 double]
 M5: [3x1 double]
 M6: [3x1 double]
 M7: [3x1 double]
 M8: [3x1 double]
 M9: [3x1 double]
 M10: [3x1 double]
 M11: [3x1 double]
 M12: [3x1 double]

Force and moment values can be extracted by calling the members of the data
structure as follows:

Joint_Forces.F5 = 1.0e ? 004 *(0.5644, -1.9908, 0)

338 A. Wubneh and Y.-S. Ma

www.manaraa.com

12 Feature-Based CAD Embodiment

The Application Programming Interface (API) open platform is used to write
program codes and generate the feature-based 3D CAD parts of the boom and stick
in NX. The programming part is implemented using Visual Studio 2008� C ++.

The results of the engineering design calculations carried out in previous sec-
tions using MATLAB� and SimMechanics� needed to be imported in a systematic
manner to be used in the generation of the CAD models. Additionally, the process
of importing and exporting data was required to be performed without direct
manual involvement. This was accomplished by creating intermediate sets of text
data files to bridge the gap.

At the end of the engineering design cycle calculations, a MATLAB� program
is used to create or update a set of.dat* text files containing the necessary input
dimensions and parameters data structures. The MATLAB� program writes/
updates these files and stores them in specific directories created for this purpose.
These files will automatically be accessed by the API C ++ code during the
generation of the CAD models. Similar to the exporting command in MATLAB�,
a C ++ program is developed, which is responsible for reading the values of this
files and storing them in the internal memory.

The locations of the shared directories were determined with consideration for
the possibility of different tasks being performed on different systems. A free
Internet file storage service was used to create a common directory shared by two
computers involved in this research. In practical industrial applications, this
approach lends itself to the implementation of efficient collaborative project, as it
provides the flexibility of assigning different tasks to different engineers working
in different geographical locations.

Classes and their corresponding objects are instantiated and used to effectively
handle the data imported. Most of these data were used in the program more than
once and adopting an object-oriented programming approach proved helpful in
managing the data. The following lines show a class for handling custom datum
coordinate system (CSYS) creating function parameters.

struct DATUM_CSYS_DATA{
 double offset_x;
 double offset_y;
 double offset_z;

 double angle_x;
 double angle_y;
 double angle_z;
 bool transform_sequence;
 int rotation_sequence[2];};

Feature-Based Mechanism Design 339

www.manaraa.com

12.1 Reusability of Functions

All the functions developed for this project were created with the C ++ API
functions provided in NX open documentations. Direct application of the basic
functions to this research was found to be very difficult and time consuming due to
the need to specifically define most initializing parameters unrelated to the
objective of this work.

An effort was undertaken to generalize most of the developed functions and
ensure their reusability. Based on the basic C ++ API functions, customized
functions were developed by incorporating additional procedures to bring user
intuitivism while simplifying the definitions of input and output arguments. More
than 40 functions were developed and used in the creation of the boom and the
stick CAD files. The following are lists of some of the tasks these functions are
responsible for.

• Reading external data files
• Creating new part model files in specified directories
• Creation of datum CSYS (Absolute and Relative)
• Creation of datum planes
• Extraction of datum planes/axis out of datum CSYS
• Creation of geometric objects such as points, lines, arcs, and B-spline curves

from data points.

12.2 Boom Modeling

The modeling of the boom part is initialized by creating a blank NX.prt file using
the function

_Create_New_Part_File(char file_path[UF_CFI_MAX_FILE_NAME_SIZE])

After creating a blank CAD modeling environment, the next step was to
properly position user-defined CSYS features for the purpose of simplicity in
additional features and object creation. The relative angular orientations and offset
distances between consecutive CSYSs were represented by instantiating an object
of the class DATUM_CSYS_DATA. In addition to relative linear displacements
and angular orientations, these objects also define the coordinate transformation
sequences (Fig. 24).

In the case study most of the CSYSs were defined and located at the joint
locations for the purpose of simplifying creation of joint associative features such
as hinges. The custom functions used for this purpose are:

340 A. Wubneh and Y.-S. Ma

www.manaraa.com

_CSYS_origin_and_direction(void)
_CSYS_offset(tag_t referece_datum_CSYS,

const double linear_offset[3],
const double angular_offset[3],
bool operation_sequence)

●
●

The optimization result vectors for the two sides of the boom exported from
MATLAB� were saved. These vectors define point coordinates of the top left edge
of the boom. B-spline curves representing each side of the boom were created from
these data points by importing within their respective CSYS (Fig. 25).

Since these edges are symmetrical about the local x–y and x–z planes, the
curves defining the lower right edges of the boom are created by reflecting the
existing curves about their x–z planes within the local CSYS (Fig. 26).

Fig. 24 Boom coordinate system (CSYS) features

Fig. 25 Boom B-spine curve features

Feature-Based Mechanism Design 341

www.manaraa.com

The function used for this purpose is:

_Mirror_a_Curve_through_a_Plane(tag_t Curve_Tag, tag_t Plane_ Tag)

The curves are modified by trimming and bridging operations to create a joined
curve feature. The following functions are used to for these operations.

tag_t _Trim_Curve_by_Datum_Plane(
tag_t Curve_Tag,
tag_t Datum_Plane_Tag,
int which_end);

tag_t _Trim_Curve_by_Curves(
tag_t Target_curve_Tag,
tag_t Tool_curve1,
tag_t Tool_curve2);

tag_t _Bridge_Curves(
tag_t Curve_1_Tag,
tag_t Curve_2_Tag,
int Reverse1,
int Reverse2,
int par1,
int par2);

The end of the boom at joints J1 and J2 are closed by arcs tangent to the upper
and lower edge curves and centered at the origins of the CSYSs (Fig. 27).

This closed curve feature represents the side wall of the boom. To create the
upper and lower floors of the boom it is required to create other sets of curve
features defining the boundaries of the surfaces. The above modified closed curve,

Fig. 26 Evolvement of features

342 A. Wubneh and Y.-S. Ma

www.manaraa.com

shown by the green line in Fig. 28, is projected onto the vertical x–y plane to form
a guideline to be used for surface sweeping operation together with the existing
one. This projected curve will serve the purpose of defining the right section of the
boom as seen from the—x directions.

Fig. 27 Joined curve features

Fig. 28 Embodiment features

Feature-Based Mechanism Design 343

www.manaraa.com

tag_t _Create_Projected_Curve(
tag_t curve_tag,
tag_t Datum_CSYS_tag,
int Plane_Num)

The third closed curve, colored green in Fig. 28, is created in a very similar
procedure as that of the above curve but with an offset value added in the
z direction to accommodate for a welding space.

The top and bottom floor surface features of the boom are generated by
sweeping a linear curve guided by the red and the green curves. To avoid potential
modeling errors associated with availability of multiple solutions for a given input
to the responsible function, this process was carried out in two stages. The side
wall surface was created from bounding curves. The functions used for this pur-
pose are:

tag_t _Join_Curves(tag_t *curves,int n)
tag_t _Point_from_Spline(tag_t curve_Tag, int line_end)
tag_t _Lines_from_two_points(tag_t point1, tag_t point2)
tag_t _SWEEP_2_guides(tag_t Guide_s1, tag_t Guide_s2, tag_t Section)
tag_t _BPLANE(tag_t Curve_String[2])

Hinge joint features are created by sketching and extruding their profiles. The
boom has two types of hinge joints: one that passes through the plate walls and one
that is welded externally to the boom structure.

Joint J1 is constructed by introducing a hollow cylindrical feature of appro-
priate dimensions to the boom structure while joints J2, J10, and J12 are con-
structed from scratch by sketching and extruding their profile (Fig. 29).

Functions used for this purpose include:

Fig. 29 Sheet body features

344 A. Wubneh and Y.-S. Ma

www.manaraa.com

tag_t _SKETCHES_J2_adopter(
char name[30],
tag_t Refrence_CSYS,
int Plane_num,
int Axis_num)

tag_t _ARC_on_sketch(tag_t Reference_CSYS)

tag_t _ARC_Center_Radius(tag_t Reference_CSYS,
int Plane_num,
double radius,
double arc_center[3],
double start_ang,
double end_ang)

tag_t _ARC_Point_Point_Radius(
tag_t Reference_CSYS,
int Plane_num,
double radius,
double arc_center[3],
tag_t p1,
tag_t p2)

tag_t _Extrude(tag_t Connected_Curve, char* limit[2])

tag_t _SKETCH_J11(
tag_t Reference_CSYS,
int Plane_num,
tag_t line_Tag,
tag_t bridge_tag)

tag_t _SKETCH_J12(
tag_t Reference_CSYS,
int Plane_num,
tag_t Curve_Tag);

The sheet bodies are thickened and the joint sketches are extruded with initial
and final limits to create the final solid body features. After the necessary modi-
fication on the joint solid features, the left side of the solid boom is created by
merging the individual solids with each other (Figs. 30, 31).

Custom functions used for these operations include:

tag_t THICKEN_Sheet(tag_t sheet_body_tag)
tag_t _UNITE_SOLIDS(tag_t Target_Solid, tag_t Tool_Solid)

This left side of the boom is mirrored about the x–y plane to create the other
half of the boom. The original and the newly created halves are then merged to
create the final boom solid body shown by Fig. 32.

Feature-Based Mechanism Design 345

www.manaraa.com

12.3 Stick CAD Modeling

The programming and part creation procedures followed for the stick are very
similar to the one adopted for the boom. Most of the functions developed are
reused directly or, in some instances, with minor modifications to address stick-
specific modeling needs.

Fig. 30 Hinge joint profiles construction

Fig. 31 Solid body features

346 A. Wubneh and Y.-S. Ma

www.manaraa.com

As was done for the boom, the modeling process for the stick started by creating
a new part file called Stick.prt using the same function. Data were imported from
the intermediate files using similar procedures. User-defined CSYSs were created
at the joint locations and some critical locations necessary for the creation of
sketches.

Generally, the stick construction procedure is easier than that of the boom
because of the parallelism of the stick CSYS features (see Fig. 33).

The arcs of the stick at the joints J2, J3, and L9 were constructed first based on
the data imported from the neutral text files. Profiles defining the edges of the stick
were created by joining these arcs with the maximum middle point straight tangent
lines as shown in Fig. 34.

After performing some line modification operations, such as trimming and
joining, the created closed loop curves are projected onto two different planes
positioned parallel to the middle x–y plane.

Figure 35 shows the cleaned and projected stick profile curves. The green and
blue curves will be used as guides to create a sheet body by a sweeping operation

Fig. 32 Final CAD model of an excavator boom

Feature-Based Mechanism Design 347

www.manaraa.com

while the red curve will be used as a boundary when creating a bounded plane. The
pink closed curve will be extruded to create the hinge solid for joint J9.

A line element parallel to the z-axis was created and used for the sweeping
operation. The following figures show the sweeping tool and the resulting sheet
body features (Fig. 36).

The left side wall is created by using the other projected curve as a boundary in
the bounding plane operation. These planes are thickened with appropriate
thickness values and with consideration for necessary inference tolerances. Joints
are created using similar procedure as used in the boom modeling. The final left
half of the boom is shown in Fig. 37.

The final complete stick solid body feature is created by merging individual
extruded and thickened solid features into a single part and mirroring this part

Fig. 33 Stick coordinate system features

Fig. 34 Feature evolvement

348 A. Wubneh and Y.-S. Ma

www.manaraa.com

Fig. 35 Embodiment features

Fig. 36 Stick sheet body features

Fig. 37 Stick solid body feature

Feature-Based Mechanism Design 349

www.manaraa.com

about the x–y plane. The mirrored and its parent solid are converted again into
single solid by merging them with similar command to get the final model shown
by Fig. 38.

13 Conclusions

The proposed generative feature-based conceptualization method for product
development is a promising response to addressing the issues found in the current
information-fragmented and experience-based practice. The method discussed in
this work can effectively capture engineering rules and facilitate the design cycle
processes through insightful configuration optimization and embodiment develop-
ment. The method also provides much-needed flexibility in terms of customization
and standardization of other products which involve frequent changes. Reusability
of the developed functions has provided evidence that, unlike traditional modeling
methods, the knowledge in the design stages can always be embedded, harnessed
for a new product, and be reused when developing future generations of similar
products. However, it is worth noting that in the authors’ opinion, regardless how
intelligent a design system may be in the future, human design expertise is always
required; the developed system can only support decision making more effectively
with some productivity tools. The case study presented proves that the knowledge-
driven feature-based conceptual design approach can handle traditionally complex
challenges such as machine linkage optimization problems.

The proposed hybrid optimization-ANN dimensional synthesis method intro-
duced in the previous chapter has greatly increased the reliability of calculated
solutions. Training the ANN with larger size of data collected from the existing
products in the market is believed to produce solutions reflective of common design
intents and common industrial trends. The hybrid ANN-Optimization method has
been proven to provide satisfactory results by generating close initial solutions of
the linkage dimensions). The optimization procedure that was also introduced in the

Fig. 38 Final CAD model of
an excavator arm stick

350 A. Wubneh and Y.-S. Ma

www.manaraa.com

previous chapter was employed to calculate the final linkage dimensions) that
satisfy the customer’s specification feature requirements. This hybrid method can
assist in generating optimal solutions in an integrated design environment.

Together with the previous chapter, this feature-based smart mechanism design
method provides a novel approach to solving similar problems in the product
design domain, i.e., a hybrid linkage dimension synthesis method. The general
procedure can be followed for the conceptual design of other mechanisms, as all
the process modules will remain valid. The only exception would be the details of
design calculations and optimization criteria since they are usually very specific to
the product under discussion. Regardless of the product being designed, the pro-
cedure is scalable.

14 Future Works

Formal definitions of generic conceptual design features need to be investigated
such that embedded engineering rules, constraints, data representations, and
behaviors can be modeled and managed generically in an object-oriented approach
and systematically implemented.

Programming and engineering analysis tools such as Visual C ++ and MAT-
LAB can be integrated with feature-based tools such as Siemens NX so that the
analysis procedure can be part of the integrated conceptual design system. Their
input and output as well as the constraints can be automatically managed
according to the formal definition of concept problems.

The conceptual design process discussed was based only on the mechanical
design aspect of the case study. The data structures and communication mecha-
nisms can be similarly used in designing other aspects of the product. For example,
the conceptual level design of hydraulic circuit subsystem in the case study can
also be modeled and solved under the proposed data and information management
scheme by implementing its own conceptualization contents.

Acknowledgments The presented research work was partially supported by Canada Natural
Sciences and Engineering Research Council of Canada (NSERC) discovery grant (No. 355454-
09) and the University of Alberta GRF (G121140079) grant.

References

1. Basak H, Gulesin M (2004) A feature based parametric design program and expert system for
design. Math Comput Appl 9:359–370

2. Bronsvoort WF, Bidarra R, Van DM (2010) The increasing role of semantics in object
modeling. Comput Aided Des Appl 7:431–440

3. Danjou S, Lupa N, Koehler P (2008) Approach for automated product modeling using
knowledge-based design features. Comput Aided Des Appl 5:622–629

Feature-Based Mechanism Design 351

www.manaraa.com

4. Durupt A, Remy S, Ducellier G (2010a) KBRE: a knowledge based reverse engineering for
mechanical components. Comput Aided Des Appl 7:279–289

5. Durupt A, Remy S, Ducellier G (2010b) Knowledge based reverse engineering: an approach
for reverse engineering of a mechanical part. J Comput Inf Sci Eng 10:044501

6. Larsen S, Jensen CG (2009) Converting topology optimization results into parametric CAD
models. Comput Aided Des Appl 6:407–418

7. Li M, Zhang YF, Fuh JYH (2010) Retrieving reusable 3D CAD models using knowledge-
driven dependency graph partitioning. Comput Aided Des Appl 7:417–430

8. Lourenco D, Oliveira P, Noort A (2006) Constraint solving for direct manipulation of
features. Artif Intell Eng Des Anal Manuf 20:369–382

9. Ma YS, Britton GA, Tor SB (2007) Associative assembly design features: concept,
implementation and application. Int J Adv Manuf Technol 32:434–444

10. Ma YS, Chen G, Thimm G (2008) Change propagation algorithm in a unified feature
modeling scheme. Comput Ind 59:110–118

11. Ma YS, Tang S, Au CK (2009) Collaborative feature-based design via operations with a fine-
grain product database. Comput Ind 60:381–391

12. Mantyla M, Nau D, Shah J (1996) Challenges in feature-based manufacturing research.
Commun ACM 39:77–85

13. Myung S, Han S (2001) Knowledge-based parametric design of mechanical products based
on configuration design method. Expert Syst Appl 21:99–107

14. Ong SK, Shen Y (2009) A mixed reality environment for collaborative product design and
development. CIRP Annals: Manuf Technol 58:139–142

15. Pratt MJ, Anderson BD (2001) A shape modelling applications programming interface for the
STEP standard. Comput Aided Des 33:531–543

16. Riou A, Mascle C (2009) Assisting designer using feature modeling for lifecycle. Comput
Aided Des 41:1034–1049

17. Shigley JE, Misheke CR (2001) Mechanical engineering design. McGraw-Hill Higher
Education, Inc, New York

18. Singh DK, Jebaraj C (2008) Feature-based design for process planning of the forging process.
Int J Prod Res 46:675–701

19. Solazzi L (2010) Design of aluminium boom and arm for an excavator. J Terrramech
47:201–207

20. Ter Hofstede AHM, Lippe E, Van DW (1997) Applications of a categorical framework for
conceptual data modeling. Acta Inform 34:927–963

21. Thakur A, Banerjee AG, Gupta SK (2009) A survey of CAD model simplification techniques
for physics-based simulation applications. Comput Aided Des 41:65–80

22. Van Der Meiden HA, Bronsvoort WF (2009) Modeling families of objects: review and
research directions. Comput Aided Des Appl 6:291–306

23. Verdes D, Stan S, Manic M (2009) Kinematics analysis, workspace, design and control of 3-
RPS and TRIGLIDE medical parallel robots. 2nd conference on human system interactions.
Catania, Italy

24. Wang H, Zhou X, Qiu Y (2009) Feature-based multi-objective optimization algorithm for
model partitioning. Int J Adv Manuf Technol 43:830–840

25. Wang Q, Li J, Wu B (2010) Live parametric design modifications in CAD-linked virtual
environment. Int J Adv Manuf Technol 50:859–869

26. Wong LM, Wang GG (2003) Development of an automatic design and optimization system
for industrial silencers. J Manuf Syst 22:327–339

27. Ye X, Liu H, Chen L (2008) Reverse innovative design: an integrated product design
methodology. Comput Aided Des 40:812–827

28. Yoon J, Manurung A (2010) Development of an intuitive user interface for a hydraulic
backhoe. Autom Constr 19:779–790

352 A. Wubneh and Y.-S. Ma

www.manaraa.com

A Smart Knowledge Capturing Method
in Enhanced Generative Design Cycles

G. P. Gujarathi and Y.-S. Ma

1 Introduction

Product development cycles involve numerous CAD and CAE interaction itera-
tions to accommodate design evolvement, changes, and verifications. Since many
common design considerations, constraints, and iterations are applied to the cycles
for the same or a set of product configurations, it is useful to develop coded and
generative programs to automate certain tedious and repetitive processes in order
to minimize the time to market and the engineer’s routine efforts. Such programs
will also assure that a common design procedure is followed throughout the
product lifecycle without redundancy or errors. The research question addressed is
how the interactions can be structurally modeled, and the engineering knowledge
captured and reused.

This chapter proposes a new method to capture and reuse engineering knowl-
edge throughout CAD and CAE interactions with a generative approach. A design
development process model was developed to record, interpret, and reuse
embedded procedural knowledge with one-time initial interactive effort, and to
facilitate CAD and CAE application program code creation. Further, CAD and
CAE model updating processes are automated as much as possible by using a
common data model (CDM). The proposed method is generic and systematic with
combined use of parametric and procedural knowledge. Design parameters and
analysis conditions can be managed and customized for specific design purposes
and changes. It offers a design automation solution for those products with rela-
tively predictable configurations and constraints.

G. P. Gujarathi
Suncor Energy Inc, Calgary, AB, Canada
e-mail: ggujarathi@suncor.com

Y.-S. Ma (&)
University of Alberta, Edmonton, AB T6G 2G8, Canada
e-mail: yongsheng.ma@ualberta.ca

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2_11, � Springer-Verlag London 2013

353

www.manaraa.com

Conventional design processes for product development use theoretical and
analytical engineering calculation-based techniques. This traditional methodology
usually involves iterative steps that are mostly performed interactively with the
help of computer-aided design (CAD) and computer engineering analysis (CAE)
tools and through a ‘‘trial and error’’ approach while trying to fit the generalized
design practice to a specific problem. Currently, CAD modeling is well established
with mature parametric design capability; design intent can be reflected by a set of
design patterns defined with features. In turn, features are defined via parameters
of dimensional values and various constraints [11]. Concurrently, engineering
analysis and verification in conventional analytical processes are being comple-
mented by CAE tools to which the modern computational methods, such as finite
element analysis (FEA), are applied. Modern ‘‘easily accessible’’ and high power
computing resources have enabled mass availability of popular numerical solu-
tions for highly complex linear and nonlinear equations. Some commercial tools
are Ansys, LS Dyna, and NX Nastran. CAE analyses provide good benchmarking
measures to ensure that the design meets engineering requirements, although CAE
results are not presumed to be so perfectly accurate as to predict real application
scenarios. CAD technology coupled with CAE offers an effective cyclic product
design approach with higher design flexibility and complexity than the traditional
approach.

In advanced industrial practice, CAD and CAE processes are interwoven during
product development cycles, as product development involves multiple iterations
throughout the evolvement and change management processes. Performing CAD/
CAE operations interactively requires a considerable amount of repetitive and
tedious effort, and hence represents a drain on various kinds of resources.

The major limitations associated with such a loosely coupled and interactive
approach consist of the following:

1. There is no systematic design process method to guide and manage the design
evolvement that can effectively interpret the product model evolvement. For
example, in the early stages of conceptual design, there is insufficient infor-
mation on specific and localized ‘‘sensitive’’ issues; only later and gradually are
the design contents enriched and stabilized with the product specifications and
constraints. A design process model that can support the design contents,
knowledge, constraints, and procedural logics from the beginning is in high
demand.

2. While the traditional analytical design approach seems to be preliminary and
rough in contrast to the demands of high material efficiency, product reliability,
and design accuracy in the modern market, CAD and CAE interaction in design
engineering presents a major hurdle for many companies. They struggle to
increase productivity, but interactive operations for CAD and CAE activities
are both complicated and time consuming. While CAD is more popularly used
due to the necessity of creating the product geometry for downstream manu-
facturing processes, CAE analysis is considered a ‘‘luxury’’ due to the effort
involved in setting up models and the computing time devoted to it. With the

354 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

cyclic nature of engineering design, the cost for fully CAE-supported product
development is high, and only companies in high value-added industries, such
as aerospace and the military, can afford it.

3. In current practice, it is quite difficult to implement certain design rules uni-
formly. Automation of design processes is a desired goal for many companies.
Research in the effective integration of various computer application tools with
effective interoperability and low technical skill requirements is highly
demanded by industrial users.

4. There is a lack of optimization for design features and parameters. Most
optimization has been done on the theoretical level, such as the thickness of the
shell in a pressure vessel design; it has been too time consuming in interactive
modeling and analysis to apply optimization for detailed design parameters and
localized features, such as the stress concentration at some sensitive corners for
material distribution considerations.

The goal of this research is to develop a practical methodology and an adaptive
process model to accommodate numerous changes and ‘‘if-then’’ scenario explo-
rations where the processes can be automated as much as possible. The proposed
approach is to combine the parametric design techniques with knowledge-
embedded computer programming. Since each design process follows a set of
specified steps, a computerized reusable design development procedure can be
used to develop different products with similar rules. To do this, it is useful to
create a program to automatically generate CAD models and carry out CAE
analysis processes. Then, considering the integration between CAD and CAE
activities, a research question arises: how might those CAD and CAE interactions
be structurally modeled and the engineering knowledge captured and reused
automatically?

2 Research Background

Tomiyama et al. [17] have run a systematic review of various current design
theories and methodologies for product development. Their study identified the
insufficiencies of those methodologies, including lack of consideration for
increasingly complex operational and geometric requirements, multidisciplinary
collaboration, management of complex product development processes and
information integration of various advanced technologies for computer-oriented
design methods.

The feature concept [9, 12, 16], which is used to model template types of
objects with semantic meanings in engineering design and manufacturing models,
has been developed to associate geometric dimensions and other design-related
parameters. When one of the feature parameters changes, it also requires modi-
fications of other parameters and feature elements driven by the associated con-
straints accordingly. Hoffman and Kim [6] discussed the issues of under- and over-

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 355

www.manaraa.com

constrained models in CAD, and suggested an algorithm to compute the valid
ranges of parameters and the numerous required constraints.

Historically, CAD and CAE data models have been developed separately in
different software packages and defined with completely different data structures.
To transfer product geometry definitions from a CAD to a CAE application, the
geometry has to be further processed, e.g., converted to a mid-plane model, or
simplified. Su and Wakelam [15] worked on creating an intelligent hybrid system
to integrate various CAD, CAE, and CAM tools in a design process using a blend
of rule-based systems. Artificial neural networks (ANNs) and a genetic algorithm
(GA) were applied using a parametric approach for model generation as well as a
rule-based approach to control the design logics.

Considerable research has been done to integrate geometric modeling and
computer-aided analysis. Zeng et al. [19] suggested the use of a knowledge-based
finite element (FE) modeling method to reduce design time, and suggested CAD-
FEA integration at the knowledge level. They also stressed the importance of
automation in the idealization of CAD and mesh generation. However, Johansson
[7] identified some of the issues that their systems encounter, i.e., the compatibility
with the available commercial CAD and CAE software tools, and difficulties in
developing complicated models. Bossak [1] and Xu et al. [18] explored the fea-
sibility of complete product development with integration of various computer-
based technologies in order to create consistent and associated models. Cao et al.
[2] developed middleware to transform CAD models into acceptable CAE mesh
models, which is a process referred to as high end digital prototyping (HEDP). It
can simplify and de-feature CAD models for FEA meshing, but the integration is
one way and lacks recursive loop support.

One of the tasks involved in the design development process is managing
semantic relations between various parameters while maintaining associativity
between parameters and design features. Pinfold and Chapman [10] proposed a
‘‘design analysis response tool’’ (DART) to use knowledge-based engineering to
automate the FE model creation process. The major objective behind this effort
was to reduce the time associated with creating and modifying an FE model.

More recently, feature technology has enabled a parametric design approach [3,
4, 13] where the physical models of design geometry are coupled with associated
dynamic behaviors. Each feature type is modeled to contain some generic and
modular design semantic concepts, which reflect those commonly accepted pat-
terns used in the engineering field. Geometric and nongeometric data structures are
included to define various features, and they are parametrically associated among
themselves across different aspects of a product model. Researchers have utilized
knowledge based and unified feature information databases for information shar-
ing, consistency, and control among different models [4].

Thus far, previous research has not considered the creation of the product model
contents or changes to it over the dynamic cycles of evolvement. There is a notable
gap in capturing accumulated engineering knowledge in the design processes and
reusing the knowledge-rich process information in the iterative cycles of product
evolvement via computer-executable codes. Unfortunately, the authors could not

356 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

find any conclusive research that covers this focused research direction. Therefore,
it can be concluded that the proposed research has strong relevance to enrich the
theoretic domain of advanced engineering informatics automation and its effective
applications.

3 Product Design Process Cycles

By definition, ‘‘Design is the act of formalizing an idea or concept into tangible
information which is distinct from making or building’’ [8]. Any design process is
a repetitive process that incorporates specific working and decision-making steps.
The activities or sub-processes involved are commonly interlocked due to the
evolvement of engineering details and to the availability of related information and
decision results.

Product development involves many stages, from initial requirement collection
to product functions and market information searches, generation of various
solutions, calculations, CAD modeling, drawing generation, and evaluation.
Finalizing the product requires several evaluation stages. If the results are not
compliant with requirements, certain steps of the process need to be repeated to get
better results. In order to save cost and reduce development time, these design
loops must be effective and should be as efficient as possible.

3.1 Parametric Design Process

Parametric modeling allows for manipulation of model data on a microparametric
level; an automated modeling process can be effectively used to propagate changes
made in parameters to the specific area of the design object. The major advantages
of parametric modeling are systematic control of the engineering design intent and
the quick propagation of changes according to new input conditions, i.e., design
changes. Parametric techniques can be employed within a number of software
tools. Most available computer modeling and analysis software packages provide
application programming interfaces (APIs). Model templates in the form of
external executable files or functions can be called upon in the application sessions
to generate product models or to run coded analysis tasks. This approach is widely
known as the generative approach [2, 6, 15, 18]. With the help of APIs, automatic
creation of computer models is much more convenient; in fact, automation of the
design process has been increasingly adopted. The use of engineering knowledge
embedded in application programs simplifies the automatic creation of design
models via design features and the parameters reflecting the design intent, and
offers better control over the product development processes.

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 357

www.manaraa.com

3.2 Design Information Flow and Sharing in a Design Cycle

Figure 1 shows the modules of a computer-based design system proposed by the
authors. The development of each process module depends upon the relative
progress of succeeding and preceding modules. Figure 1 also illustrates the
information flow between the modules. This proposed design process is semi-
automated with the help of generative CAD and CAE programs using a centralized
data repository called a CDM [5]. In order to make the entire process as flexible as
possible, it has been designed to keep the information associated with every
module in a neutral format for data sustainability.

4 Purpose of the Research

The purpose of this research is to achieve the partial automation of CAD modeling
and analysis processes by recording predefined procedures, then creating reusable
program templates through programming coupled with parametric modeling for
changes in design conditions. Theoretically, it is preferable to use a single software
tool to maintain the associativity between modeling and analysis. The diversity of
applications makes a complete and coherent product development solution too
complicated to be handled conveniently. This is because of the differences of
model definitions associated with different software tools; there are always
inconsistencies in mapping the transformation of models from one to another.
Most commercial software tools cannot uniformly support all the engineering
areas, and thus the designer has to work with two or more software tools

Fig. 1 Information flow diagram among various modules in the proposed design system [5]

358 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

concurrently and collaboratively. To support effective software functionality and
sustainability, it is essential to develop a unified data structure [5]. User-defined
information and knowledge should be represented in a neutral, reusable, and
scalable data structure. In addition, for a generative product development system
with multiple applications or modules, a user-defined procedure should be inter-
faced with all the software APIs, such as those related to the modeling and analysis
software tools.

5 Proposed Design Process Model

5.1 Cyclic Design in Conceptual and Detailed Stages

Although an engineering design process is a continuous evolvement of changes, in
most engineering design projects, design activities and deliverable models can be
divided into stages, such as the conceptual design stage and the detailed design
stage. The conceptual design stage creates a workable solution that verifies the
physics principles, solving the problem of design feasibility. The detailed design
stage completely defines the product with all manufacturing components and
assembly details; phase by phase, they are fully optimized according to different
considerations such as assembly, outsourcing, cost, and so on. Hence, as to the
contents of the deliverables for each stage or phase, the interested entities and their
related constraints which are created and managed via the integrated and syn-
chronized design model, are quite different from those in other stages or phases.
The characteristic measures include the level of intelligent representation, geo-
metrical completeness, refinement of justification and documentation, etc. When a
product model is represented in the conceptual stage, for example, a pressure
vessel with nozzles is represented as a thin shell surface model with a constant
thickness assumed and little consideration for the manufacturing issues and the
final shape factors. Such a simplified evaluation model is referred to as abstract
conceptual model. The abstract conceptual product model can also have sub-
models including a CAD abstract model, a preliminary process model, a
mechanical engineering analysis model, and so on. Similarly, when a product
reaches the production stage, its model represents the final design and manufac-
turing drawings with the complete representation before outsourcing and in-house
manufacturing. The deliverable models at that time are then collectively referred
to as the detailed product model, which has the complete definitions for the
product, comprehensive engineering calculations, and fully developed 3D solid
model geometry as well as the exhaustive 3D CAE analysis procedures and results.
To handle the evolvement processes from conceptual to detailed design stages and
their corresponding deliverables for other stages, different computer system
models can be used; such models include application software tools, routines,
representation schemes, data structures, and analysis functions or algorithms.

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 359

www.manaraa.com

5.2 CAD and CAE CDM

As discussed above, integrating CAD and CAE data models is helpful in unifying
the product’s key parameters and their related constraints, so that the design
processes and built-in engineering knowledge can be captured and represented
coherently in a programmable manner and reused in both CAD and CAE models.
That is why a CDM has been suggested, as shown in Fig. 1; the details of CDM
structure and implementation have been introduced by Gujarathi and Ma [5].
Essentially, CDM can be understood as a central data structure that stores all the
user-defined parameters and their values related to all stages of product devel-
opment, as well as the explicit references and constraints among them. CDM
allows for the neutral and coherent integration of data with explicit relations that
can be easily interfaced with any of the functional software tools, such as CAD,
FEM, and CAE packages. Due to the centralized and shared nature of the CDM,
the product modeling in each of the software tools deals with only a specific view
of the total information model, and the user programming for the specific product
model becomes much more manageable.

During the design processes, CAD modeling serves the purpose of providing
the product’s initial geometry, its visualization model, and geometric inputs for the
FE meshes. The additional information required for generating the mesh, such as
physical and material properties of the design object, are taken as parametric input
from the CDM. The FE mesh is then used in an analysis environment to apply the
required loads and constraints and to carry out the analysis calculations. Similarly,
to perform the analysis, additional associated information can also be taken from
the CDM. Thus, parametric input from a neutral CDM allows for the consolidation
of user-defined product models with specific information for various software
tools. In a template structure, associations of specific data in the CDM to the
modeling or analysis tools can be conveniently achieved by data and file-handling
functions.

5.3 Integrated CAD and CAE Processes Via the CDM

The proposed design process is semi-automated with the help of generative CAD
and CAE programs using the CDM (the centralized data repository) [5]. The
design methodology integrates two different design cycles to increase the effec-
tiveness and efficiency of product development.

The proposed process model begins with design parameterization. All the
designer’s requirements and product operational conditions are taken as input for
the program to automatically calculate all the parameters associated with the
design. To achieve this, the program uses embedded engineering design knowl-
edge and engineering calculations along with necessary professional regulatory
codes and industrial standards.

360 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

Once an initial set of parameters is developed and stored in the CDM, the next
stage is the construction of an abstract conceptual model to confirm the basic
physics principles via calculations and structures of the design object. The abstract
CAD model illustrates a general idea of the product and serves as the geometric
input for FEA. Both the CAD model and FE mesh model are generated auto-
matically with software APIs coupled with parametric modeling. The CDM cre-
ated previously is used as the parametric input to generate these models. The
parameters and the values of the newly generated conceptual models are appended
to the previous CDM in a structural form.

The next step is to generate the initial finite element mesh model from the
previous conceptual CAD design. The conceptual numerical CAE analysis is then
carried out. The results from the analysis provide the designer with the indicative
structural and performance measures, and verification is done by the designer such
that the design integrity is checked. The designer can select the necessary course of
action from the available strategies for change management. Once the necessary
changes have been made to the design, the program code recalculates all the
parameters and stores a new version of the CDM, which is used to generate a new
set of CAD models and the CAE models for analysis. The analysis results are
again provided to the designer for verification. The cycle continues until the
desired results are obtained. This kind of design cycle is referred to as the con-
ceptual design interaction cycle.

Once the design process passes through the conceptual phase, it then enters the
next stage, the detailed design cycle. A more comprehensive product model is
created using the refined CDM from the conceptual design phase. The model
created in this phase is to resemble the actual product definition as closely as
possible. The detailed CAD model is then used to create a full 3D FE mesh model
which is used to perform detailed CAE analysis. Such detailed computer models
and analyses are also generated automatically through parametric modeling with
CDM as a centralized parametric source. The development process goes through
multiple iterations until satisfactory results are obtained. Once finalized, the final
CAD models along with analysis data and final CDM records are documented to
the user for further use and for knowledge reuse in future projects.

6 Knowledge Capturing and Reuse

6.1 Knowledge Capturing Processes

In order to fully utilize the potential of product modeling automation, the program
development process needs to be recorded and further parameterized, so that it can
be reused for similar design problems. Two forms of knowledge are involved in
the development of computer-based design processes: (1) automated parametric
knowledge captured in the form of accumulated parameters and their values that

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 361

www.manaraa.com

are specific to the product, as discussed below; and (2) procedural information or
knowledge for design object handling and flow mechanism.

The automation of handling parametric data and knowledge has been proven
feasible in a programming environment [3, 4]. However, since a design process
involves a number of iterations, the creation of a coded program for model gen-
eration involves complicated logical reasoning and consumes a great deal of
programming resources. This technical barrier leads to a reliance on traditional,
manual, procedural, and interactive methods in industry. In order to achieve the
automation of design procedures, it is desirable to develop an easy method to
capture and reuse procedural knowledge in a computer interpretable and execut-
able form.

During product design, many computer-based interactions use expert knowl-
edge to achieve valid and efficient designs and to facilitate manufacturing pro-
cesses. Such knowledge inputs are reflected by the features and their parameters.
Engineering design parameters, which constitute part of the engineering knowl-
edge, were taken care of by using the CDM [5]. For example, the initial stage of a
pressure vessel design requires following engineering design rules, regulatory
codes, and standard sizes. In addition, a detailed design procedure reflects equally
critical information or knowledge such as those sequenced operations, options
chosen, and parameter values used. The proposed idea is to program the above-
mentioned CAD and CAE interactions with a one-time effort, and incorporate
them into an automated procedure that serves as the captured procedural knowl-
edge while following an accepted industrial design methodology. Once the pro-
gram has been developed, it can be reused to calculate all the required design
parameters automatically, and to store the parameters and their values in an
external neutral file format, i.e., the CDM.

The modeling and analysis parameters can be further changed during the design
process; however, the data structure incorporated and the procedural knowledge
required is largely unchanged. With the proposed method, the procedural
knowledge can be captured and reused as an executable program with the one-time
interactive and GUI-based effort.

It is expected that during the design cycles, the design processes will require
expert judgment and change management knowledge for design evolvement and
modifications. For the current study, this is achieved by providing CAE analysis
results directly to the user; an interface for the designer is created to accommodate
the intended design changes automatically. The interface program recalls and
validates embedded engineering formulae.

6.2 Knowledge Capturing and Reuse Mechanism

As discussed above, one of the most challenging tasks involved with automation of
the design process is the coding effort for the generation of the CAD geometric
model, FE mesh model, and CAE analysis model. With the increasing complexity

362 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

in modeling and analysis, API-based programming becomes more and more
lengthy and requires the user to have detailed knowledge of model development
and programming. These obstacles can be overcome by using the journaling
application in modern software tools coupled with parametric modeling.

In the proposed method, a CAD model for the design object is first developed
interactively through the software tool graphical user interfaces (GUIs). At the
same time, the entire modeling procedure is recorded into a journal file, which
consists of program functions and arguments according to the software command
interaction protocol applied. The journal file thus records all the steps taken. In
fact, many software tools have developed such journaling applications, and the
recorded commands can be embedded into a program code, which can easily be
used to develop CAx models through API automatically, in a so-called generative
approach.

6.3 Recording Interactions Between CAD and CAE

In the first iteration of the design process, every product modeling and analysis
operation needs to be carried out manually through the software GUIs while
recording every step taken by the designer using the journaling application. For
example, with Siemens NX software, the journal file contains application functions
and can be generated automatically in the form of a required programming lan-
guage such as C++. In other words, the journal file contents are command oper-
ation records, generated in the background, and follow the exact steps and logic
used by the designer during interactive processes.

Although the recorded journal file can be directly used to reproduce the created
scenario, this capability is only for strictly re-running the user-computer interac-
tive steps. To make the journal file more flexible, it has to be post-processed
manually, so that every property of the model and analysis settings can be
imported from an external data repository, i.e., the CDM for the design. In such a
way, the journaling application provides a ready structure of programming func-
tions involved with the modeling process in the required logic flow coupled with
variable parametric modeling. Figure 2 shows the program development process
for automatic generation of the computer models and analysis.

In order to create the program codes, a specific set of steps during interactive
modeling has to be designed and tested before recording the journal file. To
develop a well-defined process model, the user has to know the basic logic and
algorithms required for constraint solving and management. It is essential for the
designer to predetermine the engineering modeling and design development pro-
cesses. The first step in creating a journal file is making a reproducible ‘‘fresh start
point’’ by initialization of the application recording session. For example, all the
previous data in the form of history must be erased, so that no previous data get
recorded into the journal file. The starting setting conditions for each journal file
must be well documented and assured. The designer should use those available

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 363

www.manaraa.com

Fig. 2 Modeling and analysis program development flow using a pre-recorded journal
filejournal file

364 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

functions compatible with the journal file recording application as much as pos-
sible. The designer should also be familiar with the nature of the journal file, and
know how to separate the useful portion for creating the reusable program in the
next step from the rest of the file.

A journal file provides a list of all the process steps and data in an orderly
manner. By incorporating the journal operations into a compilation structure and
organizing them in programmable logics, a program can be developed with an
appropriate reusable data structure.

When developing the model through GUIs, the designer needs to be sure about
the corresponding associations between the parametric input requirements of
feature-related modeling and the feeding data from the external data file (CDM) as
the new input for parametric modeling [5]. By associating journaling with para-
metric modeling, the program code generated becomes flexible enough to follow
changes made into the external data file as the input data set. Each of the program
codes generated is then added to the proposed design process structure. It is clear
that using the external data file to tune the procedural knowledge embedded
journal program (and hence to manipulate the design models and analysis pro-
cedure) can create a flexible, reusable, automatic, and customizable product
development procedure.

6.4 Conversion of Journal Files Into a Reusable Program

By integrating the recorded journal files into a programming environment and
associating each command operation with the corresponding API library functions,
the journal file can be used to develop a compiled program. This program then can
be used to generate design models and run analysis routines automatically. The
relevant API functions are incorporated into the program structure through the
specific individual header files. This guarantees that the program follows the same
logic as the actual manual process and also ensures that the same model devel-
opment process is followed each time.

Since the program exactly reflects the steps taken by the designer during the
pilot interactive procedure, any specialized step required to create the model is
automatically embedded into the program, thus preserving the expert knowledge
associated with the process while making it reusable. By capturing the designer’s
knowledge and intent associated with the procedure, this compiled program
enables generalization of the customized product automatically and intelligently.

A list of input and output parameters of different types involved with model
development can be derived from the journal file. In order to integrate the CDM
with the reusable program developed, those input and output parameters need to be
converted into a data structure that can be compiled. Therefore, various data type
extraction and variable changes are required, in line with the CDM definitions [5],
as outlined here:

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 365

www.manaraa.com

1. Recording journal files step by step. Users usually go through a single recording
procedure to create a ‘‘whole’’ journal file if the modeling task is not compli-
cated. In fact, a complex interactive design or analysis session can be recorded
portion by portion, and then the journal files can be merged. The only condition
that the user has to be aware of is that the start and stop points of the journal
files correspond to the exact interactive operation state in the CAD or CAE
session. If the user makes a mistake, the recording can be stopped. After
cancelling the unwanted operation in the application session, the user can then
edit the recorded journal file by deleting the unwanted command. The user can
then continue the recording by using a new journal file. The previous journal
files can later be merged into a final complete journal file by simple text editing.

2. Creating a user-defined program environment for reusable code. The CAD and
CAE software tools used are Siemens NX v6 and NX Nastran. To code the NX
for the integrated external program, the user must first create a user-defined
program entry section in the main program development environment (Visual
C++) which can be compiled (see Fig. 3). A programming template provided
by the NX Open module is used. The recorded journal file contents are then
copied into the user-defined program section.

3. Replacing hard-coded inputs with variables. A journal file records all the macro
commands, which are the operation steps that the software takes while mod-
eling the product. During the process, all the expressions and associated
functions in the form of ‘‘hard numbers’’ are recorded, as shown in Fig. 4. To
make use of the CDM parameters and their values, those hard-coded inputs
must be replaced with variables that are to be imported into the generated
model from CDM data files as expressions. Note that the variable names
defined in the reusable program, which are to be interpreted in the NX API
functions as modeling expressions, have to be associated with the corre-
sponding variables to be imported from the CDM.

Fig. 3 Creating a program environment for reusable code

366 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

4. Deleting unnecessary data and functions. As the journal file is developed
during the process of creating a model through a GUI, it records graphical
operations as well, such as modeling view changes. These operations are not
necessary for the reusable modeling program, and should be deleted. The
journal file also records the intermediate and temporary functions and variables
generated, as shown in Fig. 5. Since such information is not required in the
reusable program code, it needs to be removed.

5. Grouping similar sections and functions together. A journal file records the
model development process step by step, and thus keeps track of each indi-
vidual process. Hence, a journal file often contains repetitive functions in the
form of step-by-step incremental commands. In order to simplify the reusable
code and enhance the efficiency of execution, all the repetitive functions and
even sections are restructured as logic loops in the compiled program and
sorted out together. Some commands have to be cleaned up, as shown in Fig. 6.

Fig. 4 Replacing hard-coded functions with variable input

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 367

www.manaraa.com

The incremental expressions are also examined, and repetitive steps are
replaced by combined equivalent cycles; again, if possible, always replace
‘‘static’’ numbers with variables.

6. Associating the program code with appropriate ‘‘.dll’’ files. In the NX envi-
ronment, when the journal file is recorded, it includes lists of all the header files
required. In order to compile the program code, the header files need to be
included; the corresponding ‘‘.dll’’ files (dynamically linked library files) are
also to be included in the program’s compiling and debugging directory.

Fig. 5 Deleting unnecessary data and function

Fig. 6 Grouping data sections and functions together

368 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

7. Maintaining associative relations among design parameters. The associative
relationship among design features can be maintained by developing a semantic
map with a well defined and semantically interconnected design parameter
scheme. The parameters are interconnected with engineering design concepts
and constraints. With well-defined parameters, constraints and interdependen-
cies between various features can be easily verified, checked, and maintained.

7 Case Study

The proposed method is applied for the design of separator vessels, which are used
in many processing industry plants. There are various types of separators,
including horizontal, vertical, and spherical. Separators are designed and manu-
factured taking into account the specific advantages and limitations of different
configurations. The basic criteria for the selection of configuration are optimized
lifecycle cost, operational safety, and accordance with design codes and standards
for the required design domain. Separators are usually customized according to the
specific operational requirements, and thus every separator requires particular
design, but the overall design procedure and engineering considerations are sim-
ilar. Thus, it is convenient to automate the design processes with a common
programmed procedure.

7.1 The Case Set: Horizontal Separators

Figure 7 shows the basic layout of a horizontal separator [14]. The mixed flow of
gas and liquid enters the separator and impacts on the inlet diverter, causing a
sudden change in momentum and hence the preliminary separation. The larger
droplets of liquid then separate over the gravity settling section and fall to the
bottom liquid collection section. The liquid is given enough retention time for the
dissolved gases to escape from the liquid gathered at the bottom and to collect in
the vapor space above.

A separator vessel is designed according to gas capacity constraints. Each type
of separator has its own merits and drawbacks. The major advantage of horizontal
separators over vertical ones is that they are compact and less expensive for the
required gas and liquid flow rate, and are more effective in cases with high gas–
liquid ratio and foaming crude. Because of the large liquid–gas interface in a
horizontal separator, there are more opportunities for gases to escape and more
time for the liquid droplets to settle down. However, horizontal separators cannot
handle solid sediments as well as vertical separators can. Vertical separators offer
more liquid surge capacity than similar horizontal vessels for a steady-state flow
rate. Under normal conditions, horizontal separators are better for oil–gas

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 369

www.manaraa.com

separation of high gas–oil ratios. They are also better for handling problems with
emulsions or foam.

Separator vessels are designed according to the American Society of
Mechanical Engineers’ boiler and pressure vessel code (ASME Code), section
VIII. Pressure vessels are designed to withstand the loadings exerted by internal
and external pressures, weight of the vessel, reaction of support, and impacts.
Temperature, pressure, and feed composition and its mass flow rate are considered
in the selection of type and the design of the vessel, and to come up with the
dimensions of the vessel. For this particular study, the only loads considered are
internal pressure and temperature. In general, vessel size is decided depending
upon the flow rate requirement. For horizontal vessels, the support dimensions are
standard and are based on the vessel diameter. During the initial product devel-
opment stage using engineering design formulae and industrial standards, all the
required parameters associated with the separator are calculated. By programming
in C++, the above-mentioned design calculations for the separator vessel design
are implemented as the embedded engineering knowledge in a program. In a
typical application scenario, the designer is provided with operating conditions for
the separator vessel in the field. The first task for the designer is to select the type
of vessel required; in this case it is either a vertical or a horizontal vessel. The
input requirements include flow rate, fluid properties, and working conditions such
as pressure and temperature.

In this study, designs for vertical and horizontal separators are developed
according to the same set of operating conditions and requirements. The embedded
calculation programs have been written generically to handle different designs.
The design input requirements used by the designer for designing the separator are
given in Table 1.

Fig. 7 Layout of a horizontal separator

370 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

7.2 Application in CAD Environment for the Data Structure

In the separator case study, the flow of the design process implemented by the
program is set up to follow the generally accepted design procedure (ASME
pressure vessel design code, section VIII) to solve an engineering problem. First,
all the input values are converted from field units to the unit category used for
calculations; in this case all the calculations are made with SI units. Next, the
relevant nongeometric parameters, associated with operation and the fluid flow, are
calculated. These parameters include gas flow rate, liquid flow rate, maximum
allowable working pressure, and allowable stress values. They constitute the
engineering information essential to calculating the geometric parameters required
to build the CAD model for the required type of vessel, and further the FEM and
CAE models. All the standard sizes for the components such as vessel diameter
and nozzle sizes are stored in external files and can be modified, as per the
requirements, by the user. This provides a flexible option for the user to design the
vessel using the available standardized elements or components in the inventory.
The calculation steps for the vertical and horizontal separator vessels are the same;
the difference is in the design of the support, considering the different require-
ments. For a vertical vessel, a supporting skirt is used, for which design equations
are coupled with standard sizes, whereas for a horizontal vessel, saddles are used
and standardized for the given vessel diameter. Some of the assumptions made for
the design process are: (1) the vessel is designed for the loading of internal
pressure; (2) the vessel is designed with essential working components; (3) the
pressure and temperature are assumed to be uniform; and (4) design is only for
static loading.

After the engineering calculations, the next step of the design process involves a
complete conceptual design model. In this step, based on the preliminary calcu-
lations, a mid-plane conceptual CAD model in a thin shell is constructed. This is a
simplified model of the vessel utilizing the parameters determined from the
engineering calculation program, as discussed above, and forms the basic structure
of the vessel with the operating essentials. This model is created for the initial

Table 1 Design requirements for two phase separator

Input parameter definition Unit Value

Liquid droplet size in fluid to be separated lm 140
Liquid flow capacity BPD 2,000
Gas flow capacity MMscfd 10
Retention time min 3
Operating pressure psi 1,000
Operating temperature �F 60
Specific gravity of oil – 40
Specific gravity of gas – 0.6
Material strength psi 20,000
Joint efficiency – 0.9

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 371

www.manaraa.com

CAE verification of the design vessel and the development of the basic vessel shell
structure. The FE model for this stage contains only 2D elements; the simulation
time (or computing time for solving the FE model) is thus much less than that for
an equivalent 3D solid model. The use of a mid-plane analysis cycle reduces the
conceptual design time, considering the numerous iterations of design changes
required in the early design stages. Figures 8 and 9 show the mid-plane CAD
model and the CAE result. They also provide the concept design for the overall
structure and can be used to create an early estimation of manufacturing expenses
based on material requirements and manufacturability.

To make any changes regarding the design during iteration, the designer is
given design-specific choices such as geometric changes, functional changes, or

Fig. 8 A separator’s conceptual mid-plane CAD model

Fig. 9 Von Mises stress analysis results via Nastran with the conceptual mid-plane model
(MPa)

372 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

direct changes to specific parameters. Again, depending upon the requirements and
the corresponding changes made by the user, the program code regenerates the
new parameter values and a new CDM. Older versions of the CDM are stored
separately in order to maintain design records for previous iterations with the help
of a file-handling mechanism.

7.3 Detailed Design for the Sample Separator Design

Once the conceptual mid-plane model is deemed acceptable, a 3D CAD model is
generated and the corresponding 3D FE analysis is performed using the detailed
CDM to perform the final analysis iterations. Similar to the mid-plane design
process cycle, all the models are automatically generated using external API
functions. Design changes are handled in a similar manner. In addition, at this time
the user can still return to the mid-plane conceptual stage to change the basic
structure and start the process again. The design process goes through a number of
iterations until the results obtained are within an allowable stress limit. Figures 10
and 11 show the final CAD model and CAE result. The final result, based on the
3D FE model, shows the maximum stress and deformation values along with their
locations. Just like the mid-plane conceptual phase, CDM files in each design
iteration phase are maintained for records. Once the design model and the CAE
results are finalized, the manufacturing drawings generated from the 3D CAD solid
models and the final CDM data can be handed over to the downstream manu-
facturing engineer for further use.

7.4 FEA Details

The current finite element method used for CAE is based on a division of the
design model into smaller elements and a calculation of the loads associated

Fig. 10 Detailed 3D solid CAD model

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 373

www.manaraa.com

separately for each element, followed by a combination of the various results for
the entire model to get final results. Design of the separator vessel was done under
the loading of internal pressure and temperature. All the loads on the structure are
static and the material is assumed to be homogeneous and isotropic.

The first step of the analysis requires meshing the available design CAD model
into suitable elements. One of the important factors for meshing is to select an
optimum mesh size. The mesh element size has to be small enough to produce
reliable results, but should be big enough, so that it will take minimum compu-
tational time. For any given vessel design, the smallest features of the model are
the various thickness associated with the nozzles and vessel body. In the case of
mid-plane model mesh, each part of the model is meshed separately to assign
specific mesh and physical properties. Well-defined objects during the CAD
modeling process make it easier to map those geometry elements with the cor-
responding mesh properties. Mapping of information between CAD and FE
software modules can be achieved by associating those similar sets of input
parameters corresponding to individual objects within both applications through a
neutral and centralized data structure (the CDM file) [5].

In the preliminary design stage with the mid-plane mesh model, as each design
object has no physical thickness associated in the form of geometry, the thickness
attribute has to be added in as a parametric physical property. The associativity
between various design features in the mid-plane model is maintained by con-
necting them with the help of grid elements. The connecting mesh elements are
massless and rigid, and thus only serve the purpose of transmitting the loads; they
do not affect the structural integrity of the model.

In the detailed design stage using the 3D solid model, mesh size was chosen to
obtain uniform meshing for those small features, which would ensure their mesh

Fig. 11 Von Mises stress analysis results from detailed 3D model via Nastran (MPa)

374 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

grids are compliant with the other larger features. In the mesh modeling process
for the current case study, the mesh creation is made automatic by using NX Open
coupled with parametric modeling; however, various physical and material
properties need to be assigned manually. The element type used for meshing is
tetrahedral, which achieves a uniform distribution around openings and corners as
well as controlling the maximum available nodes. Next, the mesh model is applied
with specific loads and constraints at the required locations automatically by
running the reusable program compiled with NX Open API and parametric
modeling functions using the CDM. Figure 12 shows the constraint and load map
for a horizontal separator analysis model. Internal pressure is applied on the main
vessel body as uniformly distributed load directed outward from the vessel surface.
The temperature is also applied to the vessel body and is assumed to be uniformly
distributed over the entire surface. A vessel support base at the ground end is given
fixed constraints to represent fastening. The nozzle ends are constrained for axial
movement along the pipe continuation in respective dimensions. The model then
goes through static analysis calculations and results in the form of maximum Von
Mises stress and maximum deformation are obtained (see Fig. 11).

The designer observes the results to judge the validation and the expected
ranges of parameters based on the constraint settings. The loading conditions can
be modified, and the analysis can be repeated to re-evaluate the solution. In the
case of interpolated continuously changing loads and constraints, an iterative
solver should be used to get a more refined and accurate solution.

7.5 Expansion of the Case Study to Vertical Separators

To test the general applicability of the proposed method to different product
configurations, the same design development structure is used to design two dif-
ferent types of vessels with some conceptual design differences and considerable

Fig. 12 Load and constraint model

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 375

www.manaraa.com

geometric differences. Figure 13a shows the basic layout of a vertical separator
along with various computer models involved in the design process. For a vertical
separator, the mixed liquid and gas flow enters the vessel from the side and
impacts the inlet diverter. The initial gross separation happens at the inlet diverter.
The liquid droplets fall down by gravity in the collection section. There are a few
internal components in the collection section, such as the vortex breaker for the
outlet; aside from that, this section is just a storage space for liquid designed as per
the required retention time. The design should provide enough retention time, so
that liquid should reach equilibrium and dissolved gases should rise upward to the
vapor space.

While rising up with the gases, the heavier liquid droplets fall to the collection
section by gravity only; those droplets having a very small diameter (less than
100 lm, approximately) are usually carried by the gases until reaching the mist
extractor. When gas passes through the mist extractor, these small droplets collide
with the mist extractor coalescing section and fall downward to the collection
section owing to lost momentum. Vertical separators are used for a flow with low
or medium gas–liquid ratio. A vertical separator fitted with a false cone at the
bottom can be effectively used to separate heavier solid particles such as sand and
other sediments. Thus, in case of a flow with a small amount of sediment, residue
can be effectively handled by the vertical separator. In the case of a low oil–gas
ratio, vertical vessels are more effective. They can also be used as gas scrubbers
where only fluid mists need to be removed from the gas, which demands extra
surge capacity.

For the design of a vertical separator, a liquid capacity constraint is used
because of the assumed higher liquid-to-gas ratio. Locations of all the nozzle
openings for a vertical separator are usually fixed and are subject to change only
because of major installation problems. A support skirt for the vertical vessel is
custom designed for each vessel depending upon the weight load and momentum.
In normal practice, external wind pressure or momentum has to be considered for
the design, as the whole structure is considered to be a ‘‘column.’’ Regarding
nozzle locations for vertical vessels, locations for manholes and gas outlets are
fixed. For fluid and liquid nozzle opening locations, only height is fixed; peripheral
location depends upon ease of installation. The design process for the vertical
separator follows the same procedure as the horizontal separator. Figure 13b
shows the mid-plane thin shell model as well as the 3D solid detailed model. The
CAE analysis results based on the mid-plane mesh model are given in Fig. 13(c),
while the 3D results are shown in Fig. 13d.

8 Advantages and Limitations

The proposed design method is an innovation beyond the conventional design
process with CAD and CAE tools used separately. The product development time,
especially the effort associated with cyclic CAD modeling and CAE analysis, can

376 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

be greatly reduced. For example, running automated design and analysis for one
cycle with the given case takes about 25 min after the development of the reusable
programs, which include modules for CAD construction and CAE analysis. In
contrast, the interactive approach takes 6 h for a skilled user to run the same
procedure. However, the automated approach requires CDM construction and code

Fig. 13 Example vertical separator design and analysis results. a Layout of a vertical separator.
b Mid-plane 3D detailed CAD models. c Mid-plane CAE analysis. d 3D detailed CAE anaysis

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 377

www.manaraa.com

preparation, which takes a one-time effort of 12 h initially. If the cycles of CAD
and CAE activities require several rounds, this one-time effort can easily be jus-
tified, as subsequent cycles will save quite a bit of time. Potential time saved can
be likened to how much a computerized numerical control (CNC) metal cutting
method can save in comparison to manual machining methods.

Since the proposed process makes better use of integrated CAD and CAE
software capabilities, it helps reduce the modeling and analysis time significantly
via the use of parametric and procedural knowledge captured in much shorter
program development time, while still maintaining the traditional design proce-
dure. The journaling application for program development clearly reduces the need
for programming expertise as well as the development time associated with the
generative CAD/CAE approach. The method proposed here also provides the
flexibility to handle complex modeling and analysis problems. The method makes
it easier than before to capture modeling and analysis procedural knowledge as
well as to make it reusable.

Parametric CAD models represent a smart product representation at a point of
time. Procedural models reflect the product construction operations over a period
of time. They are complementary and cannot replace each other. The proposed
method leverages both the knowledge representations and processing mechanisms.
Hence, it makes a unique contribution to this aspect of design methodology.

The use of a CDM makes it easier to transfer and control the specific infor-
mation associated with various models as well as coupling the computer modeling
process with an engineering knowledge-embedded program. Parameter-based
modeling and analysis facilitates changes associated with specific design features.

The limitation of this method comes from the restriction of the journal file: not
all the software capabilities can be fully utilized with a journaling application,
since it is not capable of recording every manual operation. Though the program
created is controllable and changeable to a certain degree, it lacks ideal flexibility.
However, the traditional limitation of using the journal files, i.e., repeating the
exact scenario as recorded, has been significantly relaxed by incorporating para-
metric modeling capabilities. In the new method, so long as the design and
analysis procedures are the same, and the parameters given are valid inputs, dif-
ferent products can be designed with the same generated program code. The
parameter values can be checked upfront before being used in the automated
procedure via a constraint-checking algorithm. Only those sets of parameter values
that have satisfied all the constraints are listed in the CDM as the acceptable data
sets to be used.

As the journal file itself has limited capabilities for data and file handling, after
converting it into a reusable program, the program has to be associated with an
external data repository (the CDM) and file management system to make it flexible
enough to handle changes. This task requires programming skill. To adopt the
process, engineers will need to go through certain initial training and must
understand software API programming.

378 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

9 Conclusion and Future Work

An innovative design process integration mechanism has been developed to effi-
ciently create a reusable program structure obtained by editing journal files where
the procedural engineering knowledge is embedded and by incorporating parametric
modeling knowledge. With this novel mechanism, this chapter has explored a sys-
tematic automation method for knowledge capture and reuse via CAD and CAE
programming. This method is able to improve the efficiency of the overall product
development process. The use of a common parametric data model, which seman-
tically connects CAD and CAE models, enables the designer to have better control
over the process. By changing the design contents and parameter values, an auto-
matic design process with minimal human interface is proposed and a demonstration
case developed. The adaptive nature of the proposed method enables faster devel-
opment of those products that have relatively clear development strategies and
processes. The proposed method offers parametric flexibility for different design
applications. The method enables the automation of design modeling and analysis
processes more systematically, effectively, and conveniently.

Ideally, in the proposed method, the knowledge can be captured in the form of
modular structures coupled with optimization algorithms and decision-making
procedures and matrices. This element of the method has to be explored in future
work due to limitations on available research resources. Future work is also
necessary for refining the data and knowledge management capability with more
generic program code development.

References

1. Bossak MA (1998) Simulation based design. J Mater Proc Technol 76:8–11
2. Cao BW, Chen JJ, Huang ZG, Zheng Y (2009) CAD/CAE integration framework with

layered software architecture. In: Proceedings of 11th IEEE international conference on
computer-aided design and computer graphics. Huangshan, China

3. Chen G, Ma YS, Thimm G, Tang SH (2004) Unified feature modeling scheme for the
integration of CAD and CAx. Computer-Aided Des Appl 1:595–601

4. Chen G, Ma YS, Thimm G, Tang SH (2006) Associations in a unified feature modeling
scheme. J Comput Inf Sci Eng 6:114–126

5. Gujarathi GP, Ma YS (2011) Parametric CAD/CAE integration using a common data model.
J Manuf Syst 30:117–186

6. Hoffmann CM, Kim KJ (2001) Towards valid parametric CAD models. Computer-Aided Des
33:81–90

7. Johansson J (2009) Manufacturability analysis using integrated KBE, CAD and FEM. In:
Proceedings of the ASME international design engineering technology conference, DETC
2008, vol 5, pp 191–200

8. Mital A, Desai A, Subramanian A, Mital A (2008) Product development a structured
approach to consumer product development design and manufacture. Elsevier, Oxford

9. Monedero J (2000) Parametric design: a review and some experiences. Autom Constr
9:369–377

A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles 379

www.manaraa.com

10. Pinfold M, Chapman C (2001) The application of KBE techniques to the FE model creation
of an automotive body structure. Comput Ind 44:1–10

11. Radhakrishnan P, Subramanyan S, Raju V (2008) CAD/CAM/CIM. New Age International,
Daryaganj, Delhi

12. Shah JJ, Ntylä MM (1995) Parametric and feature-based CAD/CAM: concepts, techniques,
and applications. Wiley-Interscience, New York

13. Shephard MS, Beall MW, O’Bara RM, Webster BE (2004) Toward simulation-based design.
Finite Elem Anal Des 40:1575–1598

14. Stewart M, Arnold K (2009) Gas–liquid and liquid–liquid separators. Gulf Professional
Publishing, Oxford

15. Su D, Wakelam M (1998) Intelligent hybrid system for integration in design and
manufacture. J Mater Proc Technol 76:23–28

16. Susca L, Mandorli F, Rizzi C, Cugini U (2000) Racing car design using knowledge aided
engineering. Artif Intell Eng Des, Anal Manuf 14:235–249

17. Tomiyama T, Gu P, Jin Y, Lutters D, Kind CH, Kimura F (2009) Design methodologies:
industrial and educational applications. CIRP Annals Manuf Technol 58:543–565

18. Xu X, Weiss U, Gao G (2002) The integration of CAD/CAM/CAE based on multi-model
technology in the development of cylinder head. J Autom Technol 3:47–52

19. Zeng S, Peak RS, Xiao A, Sitaraman S (2008) ZAP: a knowledge-based FEA modeling
method for highly coupled variable topology multi-body problems. Eng Comput 24:359–381

380 G. P. Gujarathi and Y.-S. Ma

www.manaraa.com

Index

A
ACIS, 16, 93, 112
AF. See Application feature
AFM. See Application feature model
Agent-based design, 178
Agent technology, 175
AL. See Application layer
American National Standards Institute

(ANSI), 152
Analysis feature model (ASFM), 121
ANN. See Artificial neural network
Annual operation requirements (AOR), 210
APFM. See Assembly planning feature model
Application cellular model (ACM), 124
Application development, 143, 146
Application feature model (AFM), 122, 124
Application features (AF), 91, 98, 121, 124
Application layer, 36, 43
Application programming interface (API), 34,

62, 70, 112, 139, 146, 306, 310,
339, 340, 357, 359, 363, 365,
373, 375

Application programming interface. See API
Application protocol, 7, 150–152, 160
Application protocol (AP). See STEP
Artificial intelligence (AI), 32, 184, 194
Artificial neural network (ANN), 279–282,

284, 285, 288, 297, 301, 312
Aspen software packages

aspen hysys, 15
aspen plus, 15

Assembly planning feature model, 122
Associated commands, 137
Association and change propagation, 122, 126,

139
Associations. See Feature association, depen-

dency, and sharing
Associative feature

case study, 153, 156, 340
definition, 90, 128
modeling, 121

Associative relationships. See Feature
association

Attributes, 22, 24, 25, 35, 41, 91, 94, 97, 98,
122, 123, 125, 132, 172

Automatic feature recognition (AFR), 155
Automation, 47, 54, 145, 153, 259, 304, 305,

307–310, 328, 355, 358, 362, 379
Autonomous agent development environment

(AADE), 176

B
Bill of materials (BOM), 195
Boolean operations

operators, 31, 106, 112, 273
Boom geometries. See Excavator boom

construction, modeling
Bore hole. See Well drilling
Bottom hole assembly (BHA), 55
Bounding sphere, 328
B-Rep. See Boundary representation under

solid modeling
BS. See Bounding sphere
B-spline curve. See NURBS curve
BST - a file extension with an integrated

engineering data format, 12
Bucket modeling, 330
Built-in test (BIT), 220
Business-to-business (B2B), 7

C
CAA. See Component application architecture
CAAD. See Computer-aided aesthetic design
CAC. See Corrosion allowance constraint

Y.-S. Ma (ed.), Semantic Modeling and Interoperability in Product
and Process Engineering, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-5073-2, � Springer-Verlag London 2013

381

www.manaraa.com

CACD. See Computer-aided conceptual design
CAD. See Computer-aided design
CAE. See Computer-aided engineering
CAI. See Computer-aided inspection
CAM. See Computer-aided manufacturing
Capacity-of-equipment constraint (CEC), 170
CAPP. See Computer-aided process planning
CAS. See Computer-aided styling
CATS. See Computer-aided tool selection
CAx integration. See Interoperability
CDFM. See Concept feature model under

feature model
CDM. See Common data model
CE. See Concurrent engineering
CEC. See Capacity-of-equipment constraint
CEE. See Environment under collaborative

engineering
Cellular model

cellular representation, 112
geometrical model, 112
topology, 92, 106, 112, 113

Centric geometric modeling-CAD, 159
Centric geometric modeling-CAE, 159, 160
Change management, 24, 45, 46, 49, 127, 354,

361, 362
Change propagation, 45–49, 118, 119, 122,

127, 132, 184, 186, 308, 309
Chemical process conceptual design features,

169, 170
Chemical process engineering (CPE), 5, 14,

18, 19, 38, 39, 41, 152,
167–169, 186

CIM. See Computer-integrated manufacturing
CNC. See Computer numerical control
Collaborative engineering

collaborative design, 6, 13
Distributed intelligent design environment

(DIDE), 175
environment (CEE), 9

Collaborative product data model. See CPDM
under data representation

Collaborative product design/development
collaborative assembly design, 10, 47
collaborative component design, 47

Common data model (CDM), 160, 164–166,
353, 358, 360, 361, 365, 366, 378

CommonKADS, 183
Component application architecture

(CAA), 146
Component design feature, 276
Component supplier management (CSM), 33
Composite features, 158
Computer-aided aesthetic design

(CAAD), 143

Computer-aided conceptual design
(CACD), 143

Computer-aided design (CAD), 4, 143, 354
Computer-aided engineering (CAE), 143
Computer-aided inspection (CAI), 6
Computer-aided manufacturing (CAM), 44,

143, 154, 158, 259, 356
Computer-aided process planning (CAPP)

generative process planning, 194
variant process planning, 194

Computer-aided styling (CAS), 143
Computer-aided tool selection (CATS), 147
Computer-integrated manufacturing

(CIM), 45, 194
Computer numerical control (CNC), 44,

153, 158, 159, 220, 259
Concept feature model, 121
Conceptual design stage, 3, 67, 119, 134,

135, 359
Concurrent engineering (CE), 5, 8, 9, 45, 117,

147, 307, 311
Configuration feature, 276, 277, 285, 298, 301
Constraint modeling

algebraic, 127
component, 128
engineering, 70, 128, 182
equation, 128
geometric, 127
manufacturing, 128
mechanical assembly, 128
rule-based, 127
semantic, 132, 157
system mechanism, 128
topological, 93

Constraint solving
evolutionary, 129
graph-based, 129
propagation, 129, 308

Constraint type
geometric, 93, 127–129, 278, 306–308, 335
management, 57, 90, 100, 185, 303,

308, 363
modeling, 125, 127, 128
representation, 113, 127, 128
semantic, 38, 93, 128

Constructive solid geometry (CSG). See Solid
modeling

Coordinate system
CSYS, 314, 339–341, 347
Coordinate system features, 314, 340, 347
Common object request broker architecture

(CORBA), 173
Corrosion allowance constraint

(CAC), 169, 170

382 Index

www.manaraa.com

Cost engineering, 9
CPCDF. See Chemical process conceptual

design feature under Feature
CPDM. See Collaborative product data model

under Data representation
CPE. See Chemical process engineering
C programming language, 70, 146
CRM. See Customer relationship management
CSG. See Constructive solid geometry
CSM. See Component supplier management
CSYS. See Coordinate system
Curve features, 314, 342
Customer relationship management (CRM), 33
Customization, 143, 145, 307, 350

D
Database (DB)

Relational database (RDB), 227
Management system (DBMS), 21, 113, 195
database search algorithms (Data search

algorithms), 195, 203
Data definition language (DDL), 196
Data exchange

Data exchange file (DXF), 196
Data exchange file (DXF), 196
Data integration scheme, 35
Data interchange, 37
Data mining, 19, 21, 22, 183
Data repository

active data collection, 34
artifact, 34, 35
data warehouse, 35
passive data collection, 34
taxonomy, 35

Data representation
Collaborative product data model

(CPDM), 12
Data layer (DL), 42
Data manipulation language

(DML), 21, 205, 209
Multi-model structure (MMS), 163

Multi-model technology (MMT), 163
DBF. See Design by feature under Engineering

design
DL. See Data layer under Data representation
Data transfer, 119, 148
Data warehouse. See Data repository
DBMS. See DBMS under Database
DC. See Design change
DDFM. See Detail feature model under

Feature model
DDL. See Data definition language
Decision-making diagrams, 199, 234

Decision-support system
(DSS), 35

Degree of freedom (DOF), 279
Dependency relations, 97, 113
Design automation, 305, 307–309, 353
Design by feature. See Engineering design
Design change (DC)

design change process, 45
Design customization, 307
Design feature, 24, 102–104, 137, 155, 157,

285, 355, 369, 374
Design for assembly (DFA), 118, 276, 307
Design for manufacturing (DFM), 2, 6, 260
Design history management tool (DHT), 10
Design intent, 23, 41, 91, 118, 128, 134, 147,

152, 153, 157, 172, 184, 276, 306,
333, 354, 357

Design parameterization, 360
Detail feature model. See Feature model
Detail simplification, 161
DFA. See Design for assembly
DFM. See Design for manufacturing
DHT. See Design history management tool
DIDE. See Distributed intelligent design

environment under collaborative
engineering

Dimension reduction, 161, 162
Dimensional data, 275, 310
Dimensional synthesis, 276–279, 281, 313,

318, 335, 350
Dimensional tolerance, 128, 193, 202, 221,

222, 227
Dimensions, 91, 101, 121, 129, 134, 173, 180,

268, 276–278, 281, 282, 285, 286,
297, 298, 303, 309, 310, 314, 318,
326, 327, 330, 335, 337, 339,
355, 370

Distance function (of a point, of two points,
of a planar curve, curve offset),
261–263

DML. See Data manipulation language under
Data representation

DNC. See Diameter of nozzle constraint under
Pressure vessel design

Downstream application management, 179
DP. See Diameter of piping under Pressure

vessel design
Drilling optimization, 61
DrillSoft software, 62, 65, 67, 73
Drill-string design, 57, 61, 62, 65–67, 73,

79, 81
DSS. See Decision-support system
DXF. See DXF under Data exchange
Dynamic interaction, 217

Index 383

www.manaraa.com

E
EAI. See External authoring interface
EC. See Engineering change
ECM. See ECM under Engineering change
ECP. See ECP under Engineering change
EIDL. See End item design life
Embodiment features, 314
End item design life (EIDL), 210
Engineering change (EC)

management (ECM), 45
propagation (ECP), 46

Engineering design
Design by feature (DBF), 153, 156

Engineering informatics, 1, 19, 20, 54, 100
Engineering server agent (ESA), 178
Engineering, procurement, and construction

(EPC), 14–17, 19, 150
Enterprise resource planning (ERP), 33
Entire product model (EPM), 89, 100, 120,

180, 181
EPC. See Engineering, procurement,

and construction
EPM. See Entire product model
ERP. See Enterprise resource planning
ESA. See Engineering server agent
ESDS. See Expert slurry-design system
Excavator design

arm, 275, 277, 280, 281, 285, 286, 298,
301, 303, 308, 328

boom construction, 328
boom geometries, 315
boom modeling, 340
stick CAD modeling, 346
stick construction, 330
stick coordinate system features, 348
stick rotation, 317, 338

Expert slurry-design system (ESDS), 55
EXPRESS language, 121
Extensible markup language (XML), 7
External authoring interface (EAI), 211

F
FAT. See Fastener-axis action tool
FBD. See Free body diagram
FE. See Finite element

FEA. See Finite element analysis
FEM. See Finite element method

Feature
associative feature, 90, 121, 123, 128, 153,

340
Chemical process conceptual design fea-

ture (CPCDF), 169, 170

Mechanical detail design feature (MDDF),
169, 170

Feature association, 127, 163, 167, 169
Feature-based modeling, 132, 153, 154, 163,

196, 304, 305, 307, 309
Feature change management, 127
Feature conversion, 155, 157
Feature dependency, 97, 113
Feature dimension mapping, 281, 282
Feature evolvement, 98, 136
Feature interaction, 158
Feature manipulation, 92, 134
Feature model

Concept feature model (CDFM), 122
Detail feature model (DDFM), 121
Machining planning feature model

(MPFM), 122
Feature recognition (FR), 107, 139, 153–156,

158, 196
Feature reference model, 48
Feature representation, 89, 113, 135
Features, 17, 20, 22, 26, 32, 47, 48, 54, 92,

101, 102, 107, 109, 121, 130, 132,
134, 135, 153, 161, 163, 180, 196,
304, 306, 308, 309, 354, 357,
362, 374

Feature shape representation, 91, 113, 134
Feature technology, 5, 32, 41, 44, 53, 54, 118,

132, 153, 154, 156, 167, 186, 303,
356

Feature transformation, 121, 301
File-based data exchange, 147
Finite element (FE), 309, 356, 361, 373
Finite element analysis (FEA), 61, 72, 136,

159, 305, 361
Finite element method (FEM), 160
Flow rate (Fr), 43, 169
Form feature mapping, 155, 157
Free body diagram (FBD), 310, 327
FR. See Feature recognition
Fr. See Flow rate
Functional application operations, 36, 137

G
GA. See Genetic algorithm
Generative product development, 359
Generic feature

definition, 90, 94, 103, 139
modeling, 91

Genetic algorithm (GA), 278, 279, 356
Geometric tolerance, 196, 200, 202, 221
Geometry conversion, 159

384 Index

www.manaraa.com

Geometry model, 112, 121, 122, 124–126
Geometry simulation (interactive simulation),

217
Geometry transformation, 160, 161
Granularity, 36, 140, 179
Graph-based methods, 155, 156
Graphical user interface (GUI), 43, 210, 313,

362, 365, 367
Group technology (GT), 194
GT. See Group technology
GUI. See Graphical user interface

H
Heating, ventilation, and air conditioning

(HVAC), 150
Horizontal data exchange, 147
Horizontal separator, 369, 370, 375
HVAC. See Heating, ventilation, and air

conditioning
Hydraulic cylinders, 286, 328, 329, 331

I
IA. See Interface agent
IBIS. See Issue-based information system
ICT. See Information and computer

technology
IEC. See International Electrotechnical

Commission
IGES. See Initial graphics exchange

specification
Informatics drivers, 20
Informatics modeling, 10, 20, 23, 25, 41, 49
Information and computer technology (ICT), 1
Information granularity, 179
Information integration, 36, 89, 90, 100, 112,

113, 173, 355
Information-sharing, 19, 36, 37, 113, 152, 185
Information technology (IT), 1, 33
Information view, 179, 180
Initial graphics exchange specification (IGES),

149, 196
Input parameter validation, 281
Interface agent (IA), 177
Integrated product data-sharing environment

(IPDE), 160
Integration-based product modeling, 33
Intergraph software packages

SmartPlant, 16, 17, 38, 39, 173
SmartSketch, 17

International electrotechnical commission
(IEC), 151

International organization for standardization
(ISO), 151

Interoperability, 5, 16, 17, 19, 40, 41, 118, 122,
139, 146, 147, 150, 152–156,
158–160, 163, 167, 177, 186

IPDE. See Integrated product data-sharing
environment

ISO. See International Organization for
Standardization

Issue-based information system (IBIS), 10
IT. See Information technology

J
JA. See Job agent
Java applets, 211–213, 215
Java shared data toolkit (JSDT), 11, 12
Job agent (JA), 178
Journaling application

conversion into reusable program, 365
journal file, 363, 365–367, 378
JSDT. See Java shared data toolkit
JTMS. See Justification-based truth main-

tenance system
Justification-based truth maintenance systems

(JTMS), 126, 127, 132

K
KA. See KA under Kinematics
Kanban, 10
KBE. See Knowledge-based engineering
KBS. See Knowledge-based system under

Knowledge-based engineering
Kinematics

analysis (KA), 313
constraints, 277, 280
dimensions, 276, 277
equations, 275, 280, 354
inverse kinematics, 277, 279, 308
problems, 276, 277

Knowledge-based engineering
engineering rules, 62, 165, 182, 310, 333
KBE, 54, 57, 180, 181–185
Knowledge based geometry modeling, 120,

128, 306
Knowledge-based system (KBS), 181

Knowledge-based product modeling, 31, 32
Knowledge capturing

expert knowledge, 362, 365
procedural knowledge, 353, 362, 365, 378

Knowledge formalize, 183
Knowledge fusion, 184, 305, 306, 308, 312

Index 385

www.manaraa.com

L
Lean manufacturing, 9
Linkage dimensions (linkage configuration

features), 276, 278, 286, 288, 297,
350, 351

Linkage optimization, 305, 350

M
Machine selection (system effectiveness mea-

sures), 208
Machining process, 109, 194, 195, 202, 207,

217, 225, 242, 243, 259
Machining volume (MV), 207
MAD. See Mass acceleration diagrams
Manipulator mechanism, 275. See also Exca-

vator arm
Manufacturing feature (machining feature),

32, 89, 100, 101, 106, 107, 109,
113, 154, 155, 195

Mass acceleration diagrams (MAD), 310, 327
MATLAB (MathWorks), 277, 296–300, 305,

308, 312, 333, 339, 341, 351
MDA. See Minimum deviation area
MDDF. See Mechanical detail design feature

under Feature
MDO. See MDO under Optimization
Mean time between failures (MTBF), 210, 220
Mean time to repair (MTTR), 210, 220
ME&D. See Mechanical engineering and

design
Mechanical detail design features, 169
Mechanical engineering and design (ME&D),

38, 152, 169
Mechanical specific energy (MSE), 62
Mechanism dynamics analysis, 327
Mechanism parameter synthesis, 281
Member functions

attribute access functions, 96, 135
data restoring functions, 136
data-saving functions, 135, 136
feature evaluation and validity functions,

98, 135
modeling operation functions, 98, 135

Methodology for knowledge based engineer-
ing applications (MOKA), 185

MFC. See Microsoft foundation class
Microsoft foundation classes (MFCs), 47
Minimum deviation area (MDA), 278
MMS. See Multi-model structure under Data

representation
MMT. See Multi-model technology under

Data representation
Modular integration, 131

Modular structures, 379
MOKA. See Methodology for knowledge

based engineering applications
MOO. See MOO under Optimization
MPFM. See machining planning feature model

under Feature model
MSE. See Mechanical specific energy
MTBF. See Mean time between failures
MTTR. See Mean time to repair
Multi-agent systems, 175
Multi-view engineering information system

approach, 137
concept, 136
technique, 137
MV. See Machining volume

N
NC. See Numerical control
NDF. See Neutral data format
Neutral data format (NDF), 46, 121, 147–149,

152, 186
Neutral reference model, 46, 48
New product development (NPD), 2, 3, 22,

194
NMT. See Non-manifold topological
Non-manifold topological (NMT), 164
Non-uniform rational B-spline (NURBS), 261,

267, 273
NPD. See New product development
Numerical control (NC), 145, 158, 159
Numerical control programs, 44, 145
NURBS curve. See Non-uniform rational B-

spline

O
Object-oriented (OO)

Object-oriented database (OODB), 205
Object-oriented manufacturing feature

(OOMF), 199
Object-oriented programming (OOP), 121,

133, 199, 312, 339
Object-oriented software, 19, 24, 90

OD. See Outer diameter
Offset curves

offset curve computation, 259, 271, 272
offset curve representation, 270, 272
offsetting closed curves, 260, 261, 269
offsetting open curves, 269

OLAP. See Online analytical processing
Online analytical processing (OLAP), 35
OO. See Object-oriented
OODB. See OODB under Object-oriented

386 Index

www.manaraa.com

OOMF. See OOMF under Object-oriented
OOP. See OOP under Object-oriented
Operational parameter optimization, 57, 81
Operations (feature, low-level, auxiliary, non-

geometric), 98, 110
Optimization

algorithms, 1, 61, 84, 279, 285, 300, 379
Multidisciplinary design optimization

(MDO), 176
Multiple objective optimization (MOO), 279
Single objective optimization (SOO), 279,

279
techniques, 259, 275, 278, 279, 281, 298

Outer diameter (OD), 68
Over-constrained problem, 96, 356

P
P&ID. See Process and instrumentation

diagram
Parametric design process, 153, 355, 357
Parametric modeling, 46, 306, 357, 358, 361,

365, 375
Parameter referencing, 46
Parameters, 49, 54, 57, 58, 61, 73, 91, 92, 104,

120, 153, 162, 165, 169, 180, 196,
208, 261, 278, 280, 282, 284, 297,
298, 303, 314, 355, 357, 360, 361,
365, 370, 371, 373, 375, 378

Part accessibility, 34, 94, 312
Parts relation, 20, 24, 41, 48, 125, 128
PCM. See PCM under Product configuration
PDM. See Product data management
Performance measurement evaluation matrix

(PMEX), 5
Performance measurement for product devel-

opment (PMPD), 5
Petroleum industry application

well drilling, 57, 61, 65. See also Well
drilling design

chemical process engineering, 5, 6, 14, 16,
18, 19, 38, 152, 167, 168, 186

PFD. See Process flow diagram
Physical vapor deposition (PVD), 225
Pin design (pin failure), 323
PLM. See Product lifecycle management
PMEX. See Performance measurement evalu-

ation matrix
PMPD. See Performance measurement for

product development
Poke yoke, 10
Pressure vessel design

Diameter of nozzle constraint (DNC), 170
Diameter of piping (DP), 169

Shell thickness constraint (STC), 169
Process and instrumentation diagram (P&ID),

172
Process flow diagram (PFD), 38, 39, 151, 172
Process informatics modeling, 49
Process modeling, 15, 21, 33, 194, 353, 354,

359, 360
Process planning, 24, 107, 133, 159, 161,

193–195, 203, 210, 220, 227, 228
Process planning simulation (Graphical User

Interface), 210
Process sequencing (Setup planning), 200,

201, 223, 227, 240
Product configuration

configurations, 54, 67, 70, 79, 84, 158, 159,
182, 275–277, 282, 284–286, 288,
296–298, 300, 301, 335, 353

Product configuration management (PCM),
170, 184

Product data management (PDM), 46, 47, 143,
160

Product data management system (PDMS), 16,
144

Product development performance/evaluation,
2, 5

Product development process (and the five
steps as subentries?), 3–5, 45, 173,
307, 308, 311, 314, 355, 379

Product lifecycle management (PLM), 20, 33,
144, 147

Product realization process (PRP), 2
Progenitor curve, 259–261, 267, 270, 273
Propagation process, 46, 48, 118, 121, 123,

279, 357
PRP. See Product realization process
PVD. See Physical vapor deposition

Q
QFD. See Quality function deployment
Quality function deployment (QFD), 5

R
Rate of penetration (ROP), 61
R&D. See Research and development
RDB. See Relational database under Database
RE. See Reverse engineering
Relational database, 8, 227
Research and development (R&D), 3
Residence time (RT), 169
Reusability

reusable data structure, 304, 365
reuse mechanism, 362

Index 387

www.manaraa.com

Reverse engineering (RE), 305, 307–309
Revolution per minute (RPM), 73, 81, 253
ROP. See Rate of penetration
RPM. See Revolution per minute
RT. See Residence time
Rule-based expert system, 56, 129, 132
Rule-based methods, 56, 129, 132, 155. See

also Engineering rule under
Knowledge-based engineering

S
Scalability, 118, 122
Search strategies, 203
Self-intersection, 259–261, 267, 271, 273
Semantics

semantic integration model, 19, 42, 169,
186

semantic mapping, 42, 43, 369
semantic modeling, 2, 19, 22–26, 40–42,

44, 120, 167, 186
semantic repository, 34
Semantic schema layer (SSL), 42, 43

Setup planning (Process sequencing), 200
Sheet body features, 314, 345, 347, 348
Siemens programs

NX, 4, 70, 145, 146, 173, 184, 310, 328,
339, 340, 351, 363, 366, 375

NX knowledge fusion, 184
NX MoldWizard, 145
NX Nastran, 354, 366

Single objective optimization (SOO), 279
Skeleton functional features, 314
SkyBlue, 96
Single minute exchange of dies (SMED), 10
SmartPlant software. See Intergraph software

packages
Solid body features, 314, 345, 348
Solid modeling

solid modeling representation, 4, 32, 132,
149, 154, 159, 261, 266, 271

Boundary representation (B-Rep), 31, 123,
155

Constructive solid geometry (CSG), 31, 32
Solid product modeling. See Solid modeling
SOO. See single objective optimization under

Optimization
Specification features, 4, 7, 10, 36, 38–40, 42,

43, 46, 54, 68, 79, 81, 89, 109, 119,
120, 134, 146, 150, 169, 184, 276,
277, 282, 285, 301, 351

Spherical separator, 278, 369
SPM. See Supply and planning management
SQL. See Structured query language

SSL. See Semantic schema layer under
Semantics

Standard for the Exchange of Product model
data

AP, 5, 6, 7, 150, 160
AP227, 150
STEP, 6, 7, 8, 12, 36, 40, 46, 89, 107, 113,

147, 149, 151–153, 158, 160, 180,
196, 306

Static interaction, 215
STC. See Shell thickness constraint under

Pressure vessel design
STEP. See Standard for the Exchange of

Product model data
Stick design. See Excavator design
Strength calculation, 319
Stress calculation

bending, 319, 322, 323, 326–328, 330
shear, 319, 323, 326
torsional, 321

Structured Query Language (SQL), 8, 21, 35,
44, 196, 203, 204, 208, 209, 220,
223, 227

Supply and planning management (SPM), 33
System integration, 38, 45, 58, 167

T
TAT. See Tool-axis action tool
Tolerances, 180, 200, 202
Tool database, 195, 196, 203–205, 220, 223
Tool modeling, 16, 310
Tool paths (tool path generation), 259
Tools selection

tool alternatives, 204–206, 223, 253
tool sets, 205–207, 223

Topological entity, 91
Topology, 92, 106, 112, 124, 267, 271
Toyota

production system (TPS), 9
TPS. See TPS under Toyota
Transition four-bar linkages, 286, 332
True vertical depth (TVP), 74
TVD. See True vertical depth

U
UC. See Unified cells
UCM. See UCM under Unified Cells
UI. See User interface
UML. See Unified modeling language
Under-constrained problem, 130
Unified cells (UC)

Unified cellular model (UCM), 124

388 Index

www.manaraa.com

Unified feature
unified feature modeling, 36, 44, 89–91,

93, 100, 111, 119–121, 124, 127,
132, 134, 139, 140, 162, 167, 168,
177, 179, 307, 356

Unified modeling language (UML), 20, 122,
184

User-defined features, 184
User interface (UI), 81, 137

V
Validity condition (constraint), 303, 309
Variational mechanisms, 303, 309
VE. See Virtual environment
Vertical data exchange, 147
Vertical separator, 369, 375, 376
Virtual environment (VE), 306
Virtual Reality Modeling Language (VRML),

210, 211, 213–217
VRML. See Virtual reality modeling language

W
Web Technology, 173, 174
Well-drilling design

bore hole, 58
bottom hole assembly, 55
drill bit selection, 55
drill-string design, 57, 62
expert slurry-design system, 55
Weight of bit (WOB), 61
well casing design, 55, 58

well casing selection, 55
well casing setting depth, 56–60
well casing size determination, 60

WOB. See Weight of bit under Well drilling
design

Workflow management system, 21

X
X3D. See Extensible 3D
XML. See Extensible markup language

Index 389

	Preface
	Contents
	Abbreviations
	Symbols
	1 Introduction to Engineering Informatics
	1…What is Engineering Informatics?
	2…Review of Computer Systems in Engineering Design and ManufacturingDesign for manufacturing (DFM)
	2.1 Product Development
	2.2 Measuring Product Development PerformanceProduct development performance/evaluation
	2.3 Existing Design Data Exchange and Communication Technologies
	2.3.1 STEPStandard for the Exchange of Product model dataSTEP-Based Method for Design and ManufacturingDesign for manufacturing (DFM) Data Exchange
	2.3.2 XMLXML-Based Data Processing for Collaborative Design

	2.4 Concurrent and Collaborative Engineering
	2.5 Lean ManufacturingLean Manufacturing
	2.6 Review of Informatics ModelingInformatics Modeling Methods for Concurrent and Collaborative Engineering

	3…Computer Applications Used in Chemical Process EngineeringChemical Process Engineering
	3.1 Chemical Process EngineeringChemical Process Engineering Project Cycles
	3.2 Domain Software Packages
	3.2.1 Aspen Packages
	3.2.2 Intergraph Packages

	3.3 Integration Gaps between Chemical Process Design and Mechanical Design

	4…Fundamental Technologies for Engineering InformaticsEngineering Informatics Solutions
	4.1 Object-Oriented Software Engineering Methodology
	4.2 Informatics ModelingInformatics Modeling Conceptualization with UMLUML
	4.3 Promising Engineering InformaticsEngineering Informatics Drivers
	4.3.1 Multifaceted Data Repository
	4.3.2 Data MiningData mining to Support Engineering Decision-Making
	4.3.3 Semantic ModelingSemanticsSemantic modeling

	5…Summary
	References

	2 A Review of Data Representation of Product and Process Models
	1…Product Modeling Methods
	1.1 Solid Product Modeling
	1.2 Feature-Based Product Modeling
	1.2.1 Definition of Feature Concept
	1.2.2 Definition of Feature Model

	1.3 Knowledge-Based Product ModelingKnowledge-Based Product Modeling
	1.4 Integration-Based Product ModelingIntegration-Based Product Modeling
	1.5 Data Requirement in Product Lifecycle Management

	2…Data Repository
	2.1 Engineering Database Technology Status
	2.2 Data Repositories in Integrated Systems

	3…Informatics Modeling in Chemical Process Engineering
	3.1 Embedded Semantics and Issues in CPE Documents
	3.2 The Current State of Informatics ModelingInformatics Modeling Research in CPE
	3.3 Semantic Modeling Methods in CPECPE
	3.3.1 Semantic Integration ModelSemanticsSemantic integration model
	3.3.2 Semantic MappingSemanticsSemantic mapping

	4…New Development in Product and Process Modeling with Engineering Informatics
	5…Engineering Change Management in Design: The Propagation Method
	5.1 The Design Change ProcessDesign changeDesign change process Framework
	5.2 Recent Research and Implementation of ECM
	5.2.1 Engineering Change Propagationchange propagation with STEPStandard for the Exchange of Product model dataSTEP Data Structures
	5.2.2 Engineering Change PropagationChange Propagation with a Feature Reference ModelFeature reference model

	6…Summary

	3 An Example of Feature Modeling Application: Smart Design for Well-Drilling Systems
	Abstract
	1…Introduction
	2…Research Approach
	3…Well-Drilling System Design Principles and Processes
	3.1 Well Casing DesignWell Casing DesignWell-drilling designwell casing design
	3.2 Drill-String DesignDrill-string design
	3.3 Drilling Optimization via Operational Parameters

	4…Proposed Software System Structure
	4.1 Casing Design Module
	4.2 Drill-String DesignDrill-string design Module
	4.3 Operational Parameter Module
	4.4 Report Generation

	5…Demonstration of the System and Procedure with a Case Study
	5.1 Casing Setting Depth and Size Determination
	5.2 Case Study for Casing Selection
	5.3 Drill-String DesignDrill-string design Demonstration
	5.4 Operational Parameter OptimizationOperational Parameter Optimization

	6…Comparison of the Generated Results with the Published Sources
	7…Summary
	Acknowledgments
	References

	4 Fundamental Concepts of Generic Features
	1…Introduction
	2…Generic Feature Model
	2.1 Feature Shape RepresentationFeature shape representation
	2.2 Validity Condition (Constraint) Definition
	2.3 Other Generic Feature Properties
	2.4 Member Functions

	3…Advanced Feature-Based Engineering Modeling: A Prospect of Advanced Design and Manufacturing Methodology
	4…Application-Specific Feature Models
	4.1 Design Feature Representation
	4.1.1 Design FeatureDesign feature Representation Schema
	4.1.2 Example of a Design FeatureDesign feature Definition: Slot
	Generic Shape Representation of Slot Feature
	Constraints
	Other Feature Properties

	4.2 Manufacturing Feature Representation
	4.2.1 Manufacturing Feature Representation Schema
	4.2.2 Example of a Machining Feature Definition: Slot
	Generic Shape of the Machining Feature Slot
	Validity Condition Definition
	Other Feature Properties

	5…Operation for Multi-Application Interoperability
	6…ACIS Cellular Geometrical Representation Schema: Multi-Application Geometry Interoperability Model
	7…Summary
	Acknowledgments
	References

	5 Unified Feature Paradigm
	1…An Overview of Feature Modeling Methods and Trends
	2…Informatics Challenges for Modern Concurrent and Collaborative Engineering
	3…Basic Requirements for a Unified Platform of Engineering Information Systems
	3.1 Introduction of Unified Feature Modeling Scheme
	3.2 Expected Capability of Unified Feature System

	4…Unified Feature Paradigm
	4.1 Unified Cellular Modeling Process
	4.2 Knowledge-Based Reasoning
	4.3 Association and Change PropagationAssociation and change propagation

	5…Constraint ModelingConstraint typemodeling in the Unified Feature System
	5.1 Constraints Definition and RepresentationConstraint typerepresentation
	5.2 Constraints in Unified Feature System

	6…Implementation Methods for the Unified feature modelingUnified Feature Model
	6.1 Object-Oriented Approach
	6.2 Feature Representation
	6.3 Feature Shape Representation
	6.4 Member Functions
	6.5 Multi-View ConceptMulti-view engineering information systemconcept
	6.6 Functional Operations and their Processes and Procedures

	7…Summary
	References

	6 Features and Interoperability of Computer Aided Engineering Systems
	1…CAx Systems, CustomizationCustomization, and Application DevelopmentApplication Development
	1.1 Introduction to CAx Systems
	1.2 Function and Data Management of CAx
	1.3 Main CAx Software Tools
	1.4 CustomizationCustomization
	1.5 Application DevelopmentApplication Development

	2…InteroperabilityInteroperability Among Systems
	2.1 Review of InteroperabilityInteroperability and Related Technologies
	2.2 Neutral Data Format
	2.2.1 Initial Graphics Exchange Specification Initial Graphics Exchange Specification
	2.2.2 Standard for the Exchange of Product Data Models

	3…Current Standards’ Limitations
	4…Feature TechnologyFeature technology
	5…CADCAD/CAMComputer-aided manufacturing (CAM) Integration via Features
	5.1 Feature Recognition
	5.1.1 Rule-Based MethodsRule-Based MethodsRule-based methods, (see also Engineering rule under Knowledge-based engineering)
	5.1.2 Graph-Based MethodsGraph-Based Methods

	5.2 Feature ConversionFeature Conversion
	5.3 Feature InteractionFeature Interaction
	5.4 CADCAD/CAPP/CAM/CNC Integration

	6…CADCAD/CAECAE Integration
	6.1 Data InteroperabilityInteroperability Between CADCAD and CAECAE Systems
	6.2 Geometry TransformationGeometry Transformation for CAD/CAECAE Integration
	6.2.1 CADCAD Detail Feature Simplification
	6.2.2 Dimension ReductionDimension Reduction

	6.3 Feature-Based CADCAD/CAECAE Integration

	7…Toward Feature-Based Integration and InteroperabilityInteroperability in Chemical Process EngineeringChemical Process Engineering
	7.1 System integrationIntegrated System Architecture for Chemical Process Engineering
	7.2 Semantic Feature AssociationFeature Associations Between Process Conceptual Design and Mechanical Detail Design
	7.3 Proposed Workflow Under the Integrated Framework
	7.4 Case Study

	8…System Architecture for Interoperable Network-Based Engineering Systems
	8.1 Web TechnologyWeb Technology
	8.2 Agent TechnologyAgent Technology
	8.3 Multi-Agent SystemsMulti-Agent Systems
	8.4 System Architecture
	8.4.1 Web Server
	8.4.2 Agent-Based DesignAgent-based design
	8.4.3 Working Procedure for Agent-Based DesignAgent-based design
	8.4.4 Downstream Application ManagementDownstream application management
	8.4.5 Database

	9…Information ViewInformation Views, GranularityGranularity, and Knowledge-Driven Engineering
	9.1 Information GranularityGranularityInformation granularity
	9.2 Information ViewInformation View
	9.3 Introduction to Knowledge-Based Engineering
	9.4 Foundations of KBEKnowledge-based engineeringKBE
	9.5 Methodology to Develop KBEKnowledge-based engineeringKBE Systems
	9.6 Implementation of KBEKnowledge-based engineeringKBE in Industrial Practices
	9.7 Future Research Issues

	10…Summary
	References

	7 Data Representation and Modeling for Process Planning
	1…Introduction
	2…Data Structure and Database for Process PlanningProcess planning
	3…Manufacturing Features and Recognition
	4…Part Setup PlanningSetup planning (Process sequencing) and Process SequencingProcess sequencing (Setup planning)
	5…Tools and Machines Selection
	5.1 Tools Selection
	5.1.1 Tool Alternative Retrieval from Tool DB
	5.1.2 Creation of Complete Tool SetsTool SetsTools selectionTool sets Based on Tool AlternativesTool AlternativesTools selectionTool alternatives
	5.1.3 Tool Selection

	5.2 Machine SelectionMachine selection (System effectiveness measures)

	6…Processing Simulation
	6.1 Graphical User Interface
	6.2 Data Communication for Simulation
	6.3 Static InteractionStatic interaction
	6.4 Dynamic InteractionDynamic interaction

	7…Examples
	7.1 Example 1
	7.2 Example 2

	8…Summary
	A.x(118). Appendix 1 Database Models for Process Planning
	A.x(118).1 Data Modeling for External Insert Holder
	A.x(118).2 Data Modeling of Insert for Turning
	A.x(118).3 Data Modeling for Internal Insert Holder
	A.x(118).4 Data Modeling of Insert Holder for Threading
	A.x(118).5 Data Modeling of Insert for Threading
	A.x(118).6 Data Modeling of Turning Tool
	A.x(118).7 Data Modeling of Threading Tool
	A.x(118).8 Data Modeling of Numerical ControlNumerical Control Lathe Machine

	A.x(118). Appendix 2emspFlowchart of Obtaining Geometry Entities from DXF Representations
	A.x(118). Appendix 3emspDecision-Making DiagramsDecision-making diagrams for Feature Definition Based on Obtained Geometric Entities
	A.x(118).1 Tangent Line Entity-Based Decision-Making Diagram for Feature Definition
	A.x(118).2 Circular Entity-Based Decision-Making Diagram for Feature Definition

	A.x(118). Appendix 4emspStructure of ManufFeature Java Class
	A.x(118). Appendix 5emspSeveral Examples of Tolerance Factors Defined in this Chapter
	A.x(118). Appendix 6emspSetup Planning and Sequencing Algorithms
	A.x(118).1 Nomenclatures
	A.x(118).2 Mathematical Formulation
	A.x(118).3 Setup PlanningProcess sequencing (Setup planning) and Sequencing Algorithm

	A.x(118). Appendix 7…Tolerance-Grade Conversion Table with Corresponding Machining ProcessMachining Processes
	A.x(118).1 IT-Numbers Based on Tolerance Coefficients
	A.x(118).2 Machining ProcessMachining Processes Corresponding to IT-Numbers

	A.x(118). Appendix 8…Summary of Knowledge Tables for Calculating Machining Parameters
	A.x(118).1 Material Classifications According to ISO 513
	A.x(118).2 Insert Grades According to ISO 513
	A.x(118).3 Basic Cutting Speed in Turning
	A.x(118).4 Feed Rate and Cutting Depth in Turning
	A.x(118).5 Durability Correction Factor (P, M, K Types)
	A.x(118).6 Work-Piece Hardness Correction Factor
	8.6.0
	8.6.0
	8.6.0

	A.x(118).7 Optimized Cutting Speed

	A.x(118). Appendix 9emspStructure of Turning ToolOODB Java Class
	A.x(118). Appendix 10emspCalculation of Production Time and Cost
	A.x(118).1 Production Time Factor, Tp
	A.x(118).2 Production Cost Factor, Ct
	A.x(118).3 Rank of Tool AlternativesTool AlternativesTools selectionTool alternatives, Score

	A.x(118). Appendix 11emspKnowledge Tables and Equation for Calculating the Maximum Power
	A.x(118).1 Cutting Resistant and Feed Influence Exponent
	A.x(118).2 Coefficient, k_{\rm{kr}}
	A.x(118).3 Required Motor Power, P

	A.x(118). Appendix 12emspStructure of MachineOODB Java Class
	References

	8 Computation of Offset Curves Using a Distance Function: Addressing a Key Challenge in Cutting Tool Path Generation
	1…Introduction
	2…Research Background
	3…Distance Function
	3.1 Distance Function of a Point Distance function (of a point, of two points, of a planar curve, curve offset)
	3.2 Distance Function of Two PointsDistance function (of a point, of two points, of a planar curve, curve offset)
	3.3 Distance Function of a Planar Curve

	4…Curve Offset
	5…Algorithm and Implementation
	6…Discussion
	6.1 Offset Curve RepresentationOffset curvesoffset curve representation
	6.2 Self-Intersection Self-intersection
	6.3 Error Control

	7…Summary
	References

	9 Feature Transformation from Configuration of Open-Loop Mechanisms into Linkages with a Case Study
	1…Introduction
	2…Background of Relevant Research
	3…The Proposed Hybrid Approach
	3.1 Overall Concept Description
	3.2 Synthesis and Validation Procedure
	3.2.1 Artificial Neural NetworkArtificial Neural Network Training
	3.2.2 Input Specification Feature Parameter Validation
	3.2.3 System Testing

	3.3 Application of the Smart Design FeatureDesign feature Transformation
	3.3.1 Initial Inverse Kinematic Solution Generation for Application
	3.3.2 Mechanism Configuration FeatureConfiguration feature Dimension Synthesis

	3.4 Results Validation
	3.5 Random System Validation Check

	4…Case Study
	4.1 Excavator Case Representation
	4.2 Data Generation for Neural Network Training
	4.2.1 Maximum Reach-Out at Ground Level ({\varvec S}_{1})
	4.2.2 Maximum Digging Depth (S2)
	4.2.3 Maximum Cutting Height (S3)
	4.2.4 Maximum Loading Height (S4)
	4.2.5 Minimum Loading Height (S5)

	4.3 Generation of Training Data
	4.4 Neural Network Training
	4.5 Solving for Linkage Configuration FeatureConfiguration feature Parameters
	4.6 Case Study Analysis Results and Discussion

	5…Conclusion
	Acknowledgments
	References

	10 Feature-Based Mechanism Design
	1…Introduction
	2…Statement of Problem
	3…Objectives
	4…Scope of Study
	5…Literature Review
	5.1 Parametric and Feature-Based CADCAD Modeling
	5.2 Design AutomationAutomationDesign automation and Integration
	5.3 Reverse EngineeringReverse Engineering and Knowledge FusionKnowledge fusion

	6…The Proposed Approach
	6.1 General Design automationDesign AutomationAutomation Method
	6.2 The Proposed Design Procedure

	7…Features and Data Structures
	8…Linkage Geometry Design
	8.1 Homogeneous Coordinate Transformation
	8.2 Boom GeometriesBoom GeometriesExcavator designboom geometries
	8.3 Stick Rotation Matrix
	8.4 Transition Four-Bar Dimensional SynthesisDimensional Synthesis

	9…Stress and Strength CalculationsStrength calculation
	9.1 Basic Stresses Involved
	9.1.1 Transverse Shear Stress, \tau_{b}
	9.1.2 Stress calculationTorsionalTorsional Stress, \tau_{\rm{tor}}
	9.1.3 Direct Stress, \sigma_{dx}
	9.1.4 Stress calculationBendingBending Stresses, \sigma_{zx}

	9.2 Pin DesignPin design (pin failure)
	9.2.1 Methods of Pin FailurePin design (pin failure)
	9.2.2 Contact Stresses
	9.2.3 Hertz’s Contact Stress
	9.2.4 Failure of Pin Due to Double Shear
	9.2.5 Failure of Pin Due to Stress calculationBendingBending Moment

	10…Mechanism Dynamics AnalysisMechanism Dynamics Analysis with Virtual Mechanism Modeling and Simulation
	10.1 Simulation Setup
	10.2 Simulink Model Construction
	10.3 Boom ConstructionBoom ConstructionExcavator designboom construction
	10.4 Stick ConstructionStick ConstructionExcavator designstick construction
	10.5 Bucket ModelingBucket modeling
	10.6 Hydraulic CylindersHydraulic Cylinders
	10.7 Transition Four-Bar LinkagesTransition Four-bar Linkages

	11…Example Simulation Analysis
	12…Feature-Based CADCAD Embodiment
	12.1 Reusability of Functions
	12.2 Boom ModelingBoom ModelingExcavator designboom modeling
	12.3 Stick CAD ModelingStick CAD ModelingExcavator designstick CAD modeling

	13…Conclusions
	14…Future Works
	Acknowledgments
	References

	11 A Smart Knowledge Capturing Method in Enhanced Generative Design Cycles
	1…Introduction
	2…Research Background
	3…Product Design Process Cycles
	3.1 Parametric Design ProcessParametric design process
	3.2 Design Information Flow and Sharing in a Design Cycle

	4…Purpose of the Research
	5…Proposed Design Process Model
	5.1 Cyclic Design in Conceptual and Detailed Stages
	5.2 CADCAD and CAECAE CDM
	5.3 Integrated CADCAD and CAECAE Processes Via the CDMCommon data model (CDM)

	6…Knowledge Capturing and Reuse
	6.1 Knowledge Capturing Processes
	6.2 Knowledge Capturing and Reuse MechanismReuse MechanismReusabilityreuse mechanism
	6.3 Recording Interactions Between CAD and CAECAE
	6.4 Conversion of Journal FileJournal FileJournaling applicationjournal files Into a Reusable ProgramReusable ProgramJournaling applicationconversion into reusable program

	7…Case Study
	7.1 The Case Set: Horizontal Separators
	7.2 Application in CADCAD Environment for the Data Structure
	7.3 Detailed Design for the Sample Separator Design
	7.4 FEA Details
	7.5 Expansion of the Case Study to Vertical SeparatorVertical Separators

	8…Advantages and Limitations
	9…Conclusion and Future Work
	References

	Index

